【摘 要】
:
联烯因其独特的结构特征和化学反应活性,在有机合成、材料科学和生命科学中得到了广泛的关注。此外,它也是很多天然产物和药物分子中的主要结构单元。联烯结构在药物分子中的引入已被证明可以显著提高它们的生物利用率、代谢稳定性和药效。近年来,化学家们发展了多种合成方法用于制备不同的联烯化合物。传统的制备方法有1.4-加成、亲核取代、分子重排等。在这些方法中,过渡金属催化的交叉偶联反应因为具有高效性、很好地化学
论文部分内容阅读
联烯因其独特的结构特征和化学反应活性,在有机合成、材料科学和生命科学中得到了广泛的关注。此外,它也是很多天然产物和药物分子中的主要结构单元。联烯结构在药物分子中的引入已被证明可以显著提高它们的生物利用率、代谢稳定性和药效。近年来,化学家们发展了多种合成方法用于制备不同的联烯化合物。传统的制备方法有1.4-加成、亲核取代、分子重排等。在这些方法中,过渡金属催化的交叉偶联反应因为具有高效性、很好地化学选择性和区域选择性的特点已经成为构建联烯最流行和可靠的方法之一。过渡金属催化/介导的炔丙基亲电试剂与各种亲核试剂的交叉偶联因为需要制备复杂的炔基亲电试剂往往需要多步操作和苛刻的反应条件。因此,如何利用廉价,易得的原料高效的合成联烯成为近年来研究热点。到目前为止,采用镍催化通过氨基酸及多肽脱氨构建联烯化合物的方法尚未见报道。本论文揭示了在温和条件下,镍催化末端炔烃与氨基酸衍生物进行普遍而有效的脱氨基联烯化反应。这种具有挑战性的交叉偶联反应成功的关键在于开发一种新型的、缺电子的、空间位阻的酰胺型NN2螯合配体,可以以快捷、高效的方式快速获得联烯。反应利用容易获得的且稳定的氨基酸吡啶盐作为偶联剂,为获得有价值的联烯提供了一种新颖和方便的策略。该反应的显著特点包括广泛的底物范围、良好的官能团兼容性和可扩展性,以及对复杂药物分子和天然产物的高效修饰。为药物化学、生命科学和材料科学等领域的研究提供方便、实用的合成策略。
其他文献
南丰蜜橘是江西省地方特色柑橘品种,因其果小皮薄、味甜易剥皮和口感好,深受人们喜爱。南丰蜜橘栽培历史悠久,可追溯至1300年前。在长期的栽培过程中,形成了丰富的南丰蜜橘变异资源。但由于缺乏系统研究,不同南丰蜜橘间亲缘关系模糊,造成了同名异物和同物异名的现象,进而影响生产推广,并造成了种苗混乱。基于此,本研究搜集20份南丰蜜橘及变异材料,利用SSR分子标记和重测序技术对其进行遗传鉴定,探究其亲缘关系,
氟硼二吡咯(也称为BODIPY)作为一类多功能、稳定的荧光团和卟啉的结构类似物,有利于光捕获和能量转移,受到了极大的关注。在这项工作中,我们设计并合成了两个基于BODIPY结构的金属-有机框架,通过羧基功能化BODIPY配体(H2TPDFB),和碗状结构的硫桥杯[4]芳烃与ZnⅡ离子组成的Zn4金属团簇进行组装,分别得到一维链状结构的BMOF 1D和二维层状结构的BMOF 2D.BMOF 1D两条
莴苣(Lactuca sativa)是世界上最重要的蔬菜之一。莴苣习性喜冷凉,栽培遇高温易提前抽薹开花,降低其食用品质和商品价值。莴苣花期的研究对莴苣的品种改良具有重要意义。本研究使用BSR分析了5个花期分离群体,鉴定到多个控制莴苣花期的遗传位点,并重点分析了其中的1个位点;通过转基因技术验证了花期整合因子LsFT基因在莴苣中的功能,并建立了一个莴苣在高温下抗抽薹的模型。主要结果如下:1.5个F2
不对称催化是有机化学研究领域中的前沿和热点。催化不对称合成是最实用、最高效、最具发展前景的手性技术的基础;而手性配体是手性催化剂产生对称诱导和立体控制的手性源。在不对称反应中,手性配体与金属催化剂在空间结构和电子效应上可以相互影响,二者结合形成的催化体系决定了反应的活性和选择性。因此设计并合成高效的手性配体及其催化剂体系仍然是最具挑战和潜力的课题之一。手性三齿配体广泛应用于多种不对称催化反应中,以
嫁接技术广泛应用于瓜类作物生产,但砧木萌蘖再生的问题一直存在,缺少实际有效的解决办法。本研究以西瓜、甜瓜和黄瓜为接穗,以南瓜和葫芦为砧木进行嫁接,通过物理和化学方法优化嫁接流程,抑制萌蘖再生,以期为瓜类作物嫁接苗省力化生产提供指导。研究结果如下:1.开发了一种新型嫁接工具,此嫁接工具由锉刀和嫁接针组成,用于摩擦去除砧木子叶基部表皮和嫁接打孔,并结合现有的嫁接方法,形成了一种少萌蘖嫁接方法。在西瓜、
不饱和烃是有机化合物的一大类,其中炔烃和烯烃衍生物广泛存在于自然界中。化学家们对不饱和烃进行了氧化环化、1,4-加成和α-H取代等一系列转化,使其可以应用于药物分子、天然产物和功能材料等领域。基于不饱和烷烃在有机合成中的重要性,我们探索了含炔基的3-芳基吲哚的氧化环化以及α,β-不饱和酮和偕二硼化合物的1,4-加成反应,丰富了不饱和烃的转化方法。1:铜催化含炔基吲哚衍生物的氧化环化反应研究探索了室
柑橘居全球水果首位,是世界第三大贸易农产品,为世界重要经济作物之一。柑橘枯水是一种果肉汁胞生理性失调病害,表现为汁胞木质化,失水干瘪,品质变劣,前期研究表明,低温是造成晚熟脐橙采前枯水的主要原因。解剖学分析发现枯水汁胞常表现出细胞壁加厚、次生壁形成。果胶甲酯酶(PME)催化细胞中同聚半乳糖醛酸去甲基酯化,果胶甲酯酶抑制酶基因(PMEI)通过与PME形成1:1可逆复合物对其特异性调控,均在植物发育和
作为一类重要的杂环化合物,N1,N3-二取代喹唑啉-2,4(1H,3H)-二酮衍生物在农药和医药领域有着广泛的应用价值。由于其重要的生物和药物活性,化学家们为探索它们的合成方法付出了巨大的努力。目前,尽管取得了重大进展,但这些方法在一定程度上存在一些主要缺点,如化学选择性差、底物范围窄、条件苛刻、药品昂贵、耗时长、原料来源不便、后处理麻烦、药品毒性较大、成本效益低和步骤繁琐等。本文以结构简单的N-
烷基吡啶类化合物在许多天然产物和药物分子中占有重要的地位。迄今为止,以吡啶为原料合成烷基吡啶化合物已有多种方法被相继报道出来。烯烃氢吡啶化,即直接将一个吡啶基团插入分子中,是一种绿色环保,且操作简便的方法。另一方面,与传统有机合成相比,有机电化学可以避免使用还原剂或氧化剂,且能够应用于大规模生产,所以利用电化学实现氢吡啶化反应将是一个理想的方法。本文报道了电化学还原硫酯活化的烯烃的氢吡啶化反应。以
作为主要粮食作物,马铃薯(Solanum tuberosum L.)在全球粮食安全中发挥着重要作用。我国是世界马铃薯种植和生产第一大国,马铃薯在农业提质增效、农民增收、巩固脱贫攻坚成果和促进乡村振兴中发挥着重要作用。由致病疫霉(Phytophthora infestans(Mont.)de Bary)引起的晚疫病是马铃薯的头号病害,严重制约马铃薯产业发展。防控实践证明,种植广谱和持久抗病马铃薯品种