论文部分内容阅读
微电子封装技术和材料是制约微电子产品设计、应用和发展的重要因素之一。进入二十一世纪以来,微电子产业的蓬勃发展推动了微电子封装技术的飞速发展,然而微电子封装材料的发展却相对较慢。随着微电子产品向着高度集成化、布线微细化、组装三维化、芯片大型化、绿色环保化等方向发展,这就对微电子封装材料提出了新的要求,朝着无杂质、高纯、高耐热等方向发展。为适应新型3D微电子封装技术的发展需求,开发低杂质、耐热的微电子封装材料,本论文在开发高纯邻甲酚醛环氧树脂的基础上,通过将耐热单体引入到邻甲酚醛环氧树脂分子链上的改性方法,提高微电子封装材料整体的耐热性,而不增加封装工艺的难度,满足微电子封装技术发展的需求。在实验过程中,发现单纯依靠实验来开发满足微电子产业要求的微电子封装材料,其过程将是漫长和耗费大量成本的。这个过程虽然能通过一些实验方法的设计进行改进,但仍需提高。本论文采用分子模拟的方法,建立分子结构模型,进而初步研究环氧树脂交联体系的一些性能,对用分子模拟方法来开拓环氧树脂研究新领域进行了一些有益探索。本论文的具体研究内容和结果如下:1、高纯邻甲酚醛环氧树脂的结构优化和开发本论文采用两步法工艺合成高纯邻甲酚醛环氧树脂。基于对第一步合成邻甲酚醛树脂机理的深入理解,通过调节工艺参数,得到了低游离酚含量、软化点可控的线型邻甲酚醛树脂。接着,探讨了邻甲酚醛环氧树脂的合成机理,分析了工艺参数对树脂性能的影响。在优化工艺参数的基础上,制备了低氯高纯的邻甲酚醛环氧树脂。目前,该工艺路线已经完成了中试实验。结果表明,该工艺流程具有可行性,能满足大规模生产的要求,可用于工业化生产符合新一代微电子封装技术需求的低氯高纯的邻甲酚醛环氧树脂。2、不同邻位含量的邻甲酚醛树脂的合成热塑性酚醛树脂是环氧树脂的一类重要的固化剂。本论文在对前期邻甲酚醛树脂合成机理研究的基础上,通过改变合成过程中催化剂的种类和工艺条件,成功地制备了邻位含量可调的邻甲酚醛树脂,并对其结构进行了定性和定量表征。接着,将其作为邻甲酚醛环氧树脂的固化剂进行初步研究,发现在高邻位酚醛树脂中特有的自催化作用,同样适用于对环氧树脂的固化。这对开发快固型环氧塑封料提供了新的可能方向。3、烯丙基改性邻甲酚醛树脂的开发采用耐热单体对环氧树脂进行改性,是提高环氧树脂耐热性的常用方法。本论文在前面对邻甲酚醛树脂合成机理的研究基础上,通过烯丙基氯与邻甲酚醛树脂的反应,得到了烯丙基改性邻甲酚醛树脂。在这种改性树脂中,通过控制反应配比,使其同时含有烯丙基和酚羟基,能成为环氧树脂的“双官能团型固化剂”。接着,将其作为邻甲酚醛环氧树脂的固化剂,并通过烯丙基引入耐热性优良的双马来酰亚胺树脂进行共聚。这样就无需添加小分子就能使耐热的双马来酰亚胺引入环氧树脂的分子主链中,实现对邻甲酚醛环氧树脂的改性。4、多官能团环氧树脂交联体系的分子模拟研究分子模拟方法是介于实验研究和理论计算之间的第三种科学的研究方法。本论文在建立多官能团环氧树脂的分子模型和固化模型的基础上,设计了一个分子模拟算法。通过这个算法,能够较为真实地模拟多官能团环氧树脂固化交联的动态过程,最终得到一个既有化学交联又有物理缠结的三维网状结构,得到的固化反应转化率较为接近真实体系。同时,通过该分子模拟算法,能对环氧树脂交联体系的一些性能进行计算,如弹性力学常数、玻璃化转变温度等,较为接近真实值。