论文部分内容阅读
在机械零件与系统的可靠性计算中,由于机械设备的输入载荷、失效模式、结构特征函数等都在时间、空间和强度上存在相当大的随机性,使得最终输出的结果(包括可靠性预测)可能产生不可预知的跃动,即非线性状态。而非线性方程是非常难以求解的,这为机械零件与系统的可靠性计算工作带来了巨大的挑战与难度。所以,将非线性问题作为考量对于可靠度计算的研究发展非常重要,也是非常必要的方向。本文从机械零件多次载荷作用下的动态可靠度研究出发,结合概率密度演化理论,提出一种新的机械零件动态可靠度计算模型,并基于此讨论了一种新的机械系统可靠度计算方法,之后对系统在多种因素下的安全和风险评估以及冗余算法优化等问题进行了考察。论文的主要工作如下:1.回溯了国内外对机械可靠性研究的历史,论证了本文提出问题与所用根据的合理性。基于已有的机械零件的动态可靠度模型,结合概率密度演化理论(PDEM),提出了可用于分析非线性系统下的动态可靠度计算模型,并采单边差分法对偏微分方程进行了数值计算。2.传统方法计算机械系统的可靠度,一般效仿电子元件可靠度计算,根据电子系统的连接逻辑将每个零件进行简单的计算,这种方法忽视了机械零件失效相关的客观存在,与工程实际并不相符。本文立足于Copula相关性理论,提出了一种将零件之间失效相关纳入系统可靠性考量的计算模型。3.由于复杂装备系统多是典型的由电子、机械、控制部分集成的系统,有结构件、电子元件、控制元件和电气设备等单元组成,因此该类系统可靠性计算必须考虑到各方面的耦合性。本文将采用层次分析法(AHP)对复杂系统进行分层结构化处理,并建立多层级可靠性评价体系,以便设计师更有效地识别系统薄弱环节、合理区别对待每个单元及其影响并开展可靠性优化设计工作。4.冗余设计通过增加备用零件以达到提升系统可靠性的目的,是一种操作便捷,成本相对低廉的设计思路。理论上,随着备用零件的增加,系统失效率可以无限接近于零,但是作为经济生产工具,严格控制其成本、安装体积和重量也十分重要。上述问题可以简化为“带边界条件的多目标算法优化”问题,随着优化目标的增多与动态环境的日趋复杂,优化结果的准确性将面临考验。本文将在机械系统冗余设计的基础上,利用粒子群算法、遗传算法、模拟退火法等智能算法,提出一种旨在寻求更准确结果的新型算法。