论文部分内容阅读
在本文中,我们主要研究了几类带有不同边界条件的非线性抛物方程解的爆破现象.利用一阶微分不等式技术,Sobolev空间理论以及最大值原理等方法讨论了解的整体存在性和有限时刻爆破性,并且分别给出了当方程的解发生爆破时解的爆破时刻的上下界估计.全文共分六章.在第一章中,我们介绍了非线性抛物方程解的爆破问题研究的历史背景,国内外的研究现状以及文中用到的一些基本定理和不等式.在第二章中,我们研究了下列一类具有非线性边界条件的p-Laplacian抛物方程解的爆破现象:其中p ≥ 0,Ω是(N≥2)中的有界光滑凸区域.在适当的假设之下,我们给出了问题的解在有限时刻爆破的充分条件,并且得到了解的爆破时刻的上界估计.此外,借助一阶微分不等式技术,我们导出了解的爆破时刻的下界估计.在第三章中,我们考虑了下列一类具有非线性边界条件的多孔介质方程解的爆破现象:其中m>1,(?)(n≥2)是带有光滑边界的有界凸区域.通过构造合适的辅助函数并结合一阶微分不等式技术,我们得到了问题的解整体存在或在有限时刻爆破的充分条件.此外,我们给出了当爆破现象出现时解的爆破时刻的上界和下界.在第四章中,我们研究了下列一类带有Neumann边界条件的非线性抛物问题解的爆破现象:其中Ω(?)RN(N≥2)为边界(?)Ω)光滑的有界区域.在适当的条件假设之下,我们给出了问题的解在有限时刻发生爆破时,解的爆破时刻的上下界估计.在第五章中,我们研究了如下一类带有Robin边界条件的非线性抛物问题:其中Ω(?)RN(N≥ 2)是具有光滑边界的有界凸区域.我们将最大值原理和一阶微分不等式技术结合起来,得到解有限时刻爆破的准则和爆破时刻的上界,并且还给出了解的爆破时刻的下界以及整体解存在的充分条件.在第六章中,我们讨论了下列一类带有加权非局部源项的非线性抛物问题解的爆破现象:这里Ω(?)(N ≥ 2)是边界光滑的有界凸区域.加权非局部源项满足a(x)f(u(x,t))≤a1+a2(u(x,t))p(∫Ω(u(x,t))l dx)m,其中a1,a2,p,l和m为正常数.结合最大值原理和一阶微分不等式技术,我们研究得到了问题的解整体存在和有限时刻爆破的充分条件;另外,当爆破现象出现时,我们估计出解的爆破时刻的上界以及下界.