基于实体类型与路径信息的知识表示学习研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:gulangxian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着知识图谱在学术界和工业界的广泛研究和普遍应用,完善与更新知识图谱数据,提升知识图谱质量成为亟不可待的任务,知识表示学习作为知识图谱补全重要的上游技术越来越受到人们的关注。知识表示学习的目标是将知识图中实体和关系嵌入到向量空间中,使它们的语义关联以可计算的形式更好地表达。知识表示学习广泛应用于实体/关系预测与补全等场景。大多数知识表示学习模型基于图结构本身的实体/关系信息,如翻译模型、卷积/图神经网络模型等。一些已开发的模型还使用了补充的附加信息,如TKRL中的实体类型和PTrans E中的多步路径等。然而,这些模型也有各自的局限。例如,面对复杂的关系类型,嵌入的近似向量分布模糊;基于卷积/图神经网络的模型不能预测关系;关系/实体预测的准确性不够;当数据稀疏时,知识图谱补全质量下降等。针对以上问题,本文提出了集成实体和关系附加信息的知识表示学习方法(Integrating Entity and Relation Additional Information for Knowledge Representation Learning,简称IERAI)、融合实体类型和关系路径的知识表示学习研究(Integrating Entity Type and Relation Path Information for Knowledge Representation Learning,简称TP-KRL)和基于间接关系路径投影的知识表示学习方法(Indirect Relation based Path Projection,简称IRPP),在一定程度上解决了已有的知识表示学习方法存在的问题。本文主要研究工作如下:(1)为了同步提高关系和实体向量嵌入的质量,本文提出了集成实体和关系附加信息的知识表示学习方法IERAI。我们首先通过计算间接关系路径和直接关系的共现概率的大小对候选路径进行排序来过滤有效路径信息,接着利用直接关系选择实体类型信息,再对多源信息进行建模并联合训练。类型信息的融合可以减少实体表示的歧义,同时,有效的间接关系可以提高关系表示的精度。在FB15K和FB15K-1855(添加低频关系)数据集上的实验结果表明,IERAI能够有效提高实体与关系预测的质量,多种附加信息的融合一定程度上弥补了数据稀疏时嵌入不准确的问题。(2)提出了融合实体类型和关系路径的知识表示学习研究TP-KRL。基于对IERAI模型的进一步研究,我们发现除了直接关系,路径中的间接关系同样会对头尾实体的类型信息进行限制,并且在某些场景下,直接关系也无法确切选择实体对应的正确类型,此时只有路径中的间接关系可以确定。两步关系路径中的第一步关系会和直接关系共同限定头实体类型信息,第二步关系会和直接关系共同限定尾实体类型信息。于是我们进一步提出融合实体类型和关系路径的知识表示学习算法TP-KRL,在三元组缺失部分预测实验上的结果证明,TP-KRL对实体表示和关系表示的效果均有提升。(3)为了进一步利用关系路径的附加语义,本文提出了一种新的关系路径投影模型IRPP。我们对直接关系和关系路径均设置不同的投影空间,为降低算法复杂度,直接关系映射矩阵由向量乘法构建,关系路径空间的映射矩阵由多个直接关系映射矩阵组合得到。我们将每个实体投影到直接关系和间接关系路径的潜在空间中,利用平移近似原则构建联合得分函数和损失函数,在训练中学习实体与关系的分布式表示。实验结果证明IRPP有助于知识图谱的补全与推理。
其他文献
本文研究基于卷积神经网络的传统中医舌象诊断算法。论文使用目标检测、语义分割和图像识别卷积神经网络相结合的方式,实现将中医舌象诊断结构化和客观化。论文首先着手研究中医舌象诊疗理论,学习舌诊相关知识,掌握舌象诊断方法,为之后舌象诊断标准化打下基础。本文依照中医理论将舌象划分出舌色与舌质两个方向。从舌色角度出发,将舌色归类出青紫舌、绛红舌、淡红舌和淡白舌。从舌质角度出发,将舌质归类出裂纹苔、芒刺苔、滑腻
学位
随着集成电路和微机电系统的不断发展,低功耗电子器件逐渐得到了广泛的应用。传统的为低功耗电子器件供电的方式是采用化学电池,但是化学电池存在使用寿命有限、维修成本高及环境污染大的问题。收集环境中可再生能源的能量收集技术则成为化学电池的一种有效的替代品。环境中的超低频(<5 Hz)机械运动中蕴含的能量由于其存在广泛而受到研究者的关注。然而,传统的收集机械能的振动式、摆动式和旋转式俘能器因其输出性能较差及
学位
随着计算机视觉领域的发展,一系列依赖于计算机视觉的应用场景和解决方案纷纷涌现,如自动驾驶、智慧安防等等。这些智能应用技术都离不开计算机视觉中的目标检测这个关键任务。目标检测任务根据输入信息源可以分为多类,本文旨在研究二维图像中的目标检测。该任务可以描述为给定二维图像,输出其中存在的已知类别的目标实例的类别及位置。现有的代表性目标检测方法大都仅仅依靠目标区域的局部特征独立地对每个候选目标进行检测。这
学位
行人检测作为一种计算机视觉任务,能够及时对成像设备产生的图像进行分析处理,为针对行人的后续任务做出保障。由于其在无人驾驶,安全等方面具有重大意义,因此受到了广泛的研究与应用。传统的行人检测方法往往基于单模态的输入数据,如可见光图像,红外图像等。然而单模态数据在特定条件下常常存在缺陷,在处理复杂环境条件下的行人目标时,往往无法获取明确的行人信息,从而使得基于单一模态的行人检测存在较高的漏检以及虚警率
学位
随着遥感技术的飞速发展,遥感卫星捕捉到的视频数据包含了更丰富的地物信息,能更有效地完成城市交通管理、海洋监测、智慧城市等任务。然而,在遥感视频中跟踪对象并非易事。首先,遥感视频通常存在分辨率低、对比度低、视野宽的特性,这意味着视频中的物体密集且相互干扰,因此网络很难提取有效的特征。此外,目前主流的基于孪生神经网络的跟踪方法用于匹配模板和搜索框特征的互相关操作是一个局部线性匹配过程,容易导致语义信息
学位
恒定导通时间(COT)控制的开关电源凭借快速瞬态响应的优点迎来了日益增长的市场需求与研究热度,被广泛用于电信设备、计算机、服务器、汽车电子等众多领域。但传统COT控制的工作原理决定了其存在输出电压精度低、开关频率大幅变化引发电磁干扰等缺陷。在高压宽输入范围的转换器中,大幅变化的占空比使得上述缺陷更为显著。顺应高精度输出电压与高精度开关频率的发展趋势,本文研究了相关理论与现有改进技术,提出了创新的输
学位
近年来,随着人工智能、即时通讯和智能手机的发展,互联网中的各种数据处于指数级增长的状态。特别是对于一些UGC(User-Generated Content,用户生产内容,也称UCC)平台,用户可以随时随地将自己创作的图片、视频或音频等不同类型的多媒体数据上传到软件平台上。因此,如何高效、准确地从海量的多媒体数据中检索出用户需要的内容是一个具有应用价值却又极具挑战性的问题。因为不同模态数据的底层特征
学位
随着晶体管尺寸逐渐接近物理极限,高速集成电路设计面临的问题及挑战也越来越多,使得集成电路的性能和集成速度逐渐放缓。而三维集成技术由于其集成度更高、互连延迟更低并且可以实现异质集成而得到了广泛研究。其中,硅通孔(Through Silicon Via,TSV)的研究已经变成一个重要课题。虽然TSV的引入存在许多优点,但会给系统的电源完整性带来影响。例如,TSV的大量应用会为系统引入额外的面积,同时,
学位
近年来,随着BCD工艺的发展,智能功率集成电路(SPIC)逐渐在汽车电子,航天航空,智能家居等领域发挥重要作用。电机驱动电路作为智能功率集成电路的核心模块,正不断朝着低成本,高可靠性和高集成度等方向发展,在中小功率设备中广泛使用并且不可或缺,市场前景非常广阔。如今我国正大力发展集成电路行业,对集成电机驱动电路的研究必不可少。本文从研究小功率电机桥式驱动器集成电路设计出发,围绕提高系统集成度,针对芯
学位
在早期研究中,隐身飞机能够凭借其低可探测性来进行战区突防,完成防空区域中的侦察、支援、打击等任务。随着反隐身技术不断发展,如今单纯依靠隐身飞机自身的低可探测性已经难以完成作战任务。为了提高隐身飞机的作战效率,需要建立防空雷达的探测概率模型,根据模型规划出一条适合隐身飞机的航路。该航路不能有超过探测概率阈值的航路点,还要满足隐身飞机的基本机动性能约束。由于实际的战场环境复杂多变,对不同场景下的隐身飞
学位