论文部分内容阅读
三峡工程是当今世界上最大的水利枢纽工程之一,具有防洪、发电、航运、养殖、供水等综合效益,对库区及长江中下游地区的经济发展和生态状况具有重要作用。自2003年水库蓄水以来,库区形成一个长600多km,宽1~2km,总面积达1084km2的人工湖泊。在气候变化和人类活动的影响下,库区及上游流域自然状态和地表水文情势均发生了明显变化,这对流域水资源综合利用与管理、防洪和抗旱带来了新的挑战。定量分析全球气候变化和水库区域气候效应对库区及上游流域水文气候的影响,对于深入理解大型水利工程区域水文气候效应与作用机制,研究流域未来气象灾害发生规律、灾害预警以及水资源高效利用等方面具有重要的科学意义和应用价值。本论文的主要研究目标是研究全球气候变化和三峡水库区域气候效应综合影响下的长江上游流域水文过程变化规律,揭示水库蓄水对陆面水文过程和区域气候的作用机制。围绕上述研究目标,论文以三峡库区及上游流域为研究对象,在区域气候模式参数方案敏感性评估、区域气候效应与未来极端气候、陆-气耦合模拟系统构建及应用、径流过程预测等方面展开研究。研究取得的主要结论及创新成果包括:(1)基于多目标函数秩评分法综合评估区域气候模式(Reg CM4)的模拟能力,对比分析不同积云对流参数化方案和陆面过程方案的选取对长江上游流域模拟性能的影响。72组混合参数化方案对长江上游流域气温具有较好的模拟性能,但对降水的模拟性能较差。降水对积云对流参数化方案具有较强的敏感性,Kain-Fritsch方案对长江上游降水的综合模拟性能最优,而生物圈-大气圈传输方案(Biosphere-Atmosphere Transfer Scheme,简称BATS)对长江上游气温的综合模拟性能最优。在Kian-Fritsch积云对流方案下,与BATS陆面方案相比,CLM陆面方案具有更高的土壤湿度和感热通量以及更少的蒸散发和降水量,直接导致CLM方案模拟的地表气温偏高。CLM方案中偏暖的地表气温和偏少的蒸散发促使模拟水汽输送能力偏弱,导致CLM方案模拟的降水偏少。同时,CLM方案相对偏干的大气在一定程度上也增加了到达地表的净辐射通量,改变了地表能量收支,进而造成CLM与BATS模拟的地表气温差异扩大。(2)基于Reg CM4分析三峡水库的区域气候效应及其对库区极端降水的影响,揭示三峡水库区域气候效应作用机制。在湖泊方案L1情景下,除春季外,其他季节库区气温均有所上升,年平均气温升温达到0.12℃;年平均降水减少0.28mm/day,其中春季和夏季的减少程度最大;蒸发在秋季和冬季增加,在春季和夏季减少,全年平均增加0.04mm/day。根据MSE、CAPE以及CIN等指标变化差异表明,在水库水面冷却作用影响下,库区白天对流活动受到抑制,导致库区内降水显著减少,进而影响极端降水;气温的变化主要是水库与周围陆地之间进行了大量的能量交换,对区域年内能量收支起到了调节的作用;蒸发变化主要受CLM4.5湖泊模型中湖面0.05m处的水温与2m高度气温之间的温度梯度大小及方向的季节性变化影响,同时还受浅层水温与深层水温的温度梯度大小影响;在湖泊方案L2情景下,弱降水事件受库区气候效应的影响程度明显大于强降水事件。库区内弱降水事件(50th以下)的强度和频次均显著下降;强降水事件(90th以上)的频次略有减少,但其对年降水量的贡献及强度均略有增加。水库区域气候效应对降水的影响集中在20km以内,对未来2021-2050年的各项极端降水指数年际变化趋势没有明显影响。(3)基于Reg CM4、可变下渗容量模型(Variable Infiltration Capacity Model,简称VIC模型)以及基于分位数映射法(Quantile mapping method,简称QM法)的气候要素校正模型构建长江上游流域单向陆气耦合模拟系统。基于广义似然不确定性估计方法(Generalized Likelihood Uncertainty Estimation,简称GLUE)对VIC水文模型参数进行敏感性分析,结果表明可变下渗能力曲线形状参数B和第二层土层厚度D2为模型中的敏感性参数。基于GLUE法计算的95%置信区间基本涵盖验证期各站点的实测径流量,表明构建的VIC大尺度分布式水文模型对长江上游径流的模拟具有一定的可行性。VIC模型能够较好的模拟长江上游流域的日尺度和月尺度水文过程和流量峰现时间,在校准期和验证期的纳什系数均在0.9以上,相对误差在±10%以内。VIC模型对流域丰水年的模拟性能优于枯水年,对丰水年的年径流总量存在低估,而对枯水年的年径流总量存在高估。基于分位数映射法构建了气候要素订正模型,并对基于单分布和混合分布的分位数映射法订正性能进行评估,根据均方根误差、和方差、相关系数等评估指标,均表明混合分布分位数映射法对降水的订正效果优于单分布。(4)基于陆气耦合模拟系统模拟长江上游流域未来气候和水文过程,定量分析气候变化和库区气候效应对径流过程及径流组分的影响。Reg CM4动力降尺度预测结果表明,与基准期1971-2000年相比,未来2021-2050年长江上游流域东部趋于暖干,而西部区域暖湿,流域总径流减少约4.1%~5%,融雪径流减少约36%~39%,极端径流略有降低。径流减少主要在流域东南部,降水的减少以及蒸发量的增加是导致该地区径流大量减少的直接原因。水库区域气候效应对总径流的影响程度与全球气候变化的影响程度相当,并影响径流的小尺度周期。在典型浓度路径(Representative Concentration Pathways,简称RCPs)的未来RCP 4.5情景下,湖泊方案L1和湖泊方案L2中水库区域气候效应使得流域年径流总量分别增加了2.9%和3.7%,极端径流略有增加,表明水库区域气候效应在一定程度上缓解了气候变化对径流的不利影响。水库区域气候效应对降水的空间格局及结构的改变是导致流域年径流量变化的主要因素。