【摘 要】
:
以钢材、铝合金等为代表的弹塑性材料被广泛应用于航空航天、能源动力、交通运输等关键工业领域。由于严苛的服役环境和复杂的载荷工况,此类材料在服役过程中往往会产生塑性变形、微裂纹的萌生直至宏观上的裂纹扩展等非线性行为,最终表现为断裂破坏。经典的断裂力学理论在描述此类行为时存在一定的瓶颈。发展一套能够准确预报此类材料失效行为的理论具有重要的科学意义和工程价值。本文建立了一种考虑能量阈值的弹塑性材料断裂相场
【基金项目】
:
国家自然科学基金(11972134); 机械结构强度与振动国家重点实验室(西安交通大学)开放课题(SV2021-KF-07);
论文部分内容阅读
以钢材、铝合金等为代表的弹塑性材料被广泛应用于航空航天、能源动力、交通运输等关键工业领域。由于严苛的服役环境和复杂的载荷工况,此类材料在服役过程中往往会产生塑性变形、微裂纹的萌生直至宏观上的裂纹扩展等非线性行为,最终表现为断裂破坏。经典的断裂力学理论在描述此类行为时存在一定的瓶颈。发展一套能够准确预报此类材料失效行为的理论具有重要的科学意义和工程价值。本文建立了一种考虑能量阈值的弹塑性材料断裂相场模型,提出了一种高效准确的整体法求解方案。通过定义历史场变量函数,实现了对多孔弹塑性材料断裂行为的准确预报。本文的主要工作可以分为三个部分:首先,在经典断裂相场法的基础上,建立了一种考虑能量阈值的弹塑性断裂相场模型。该模型在构建系统的能量泛函时,采用了断裂能体积密度的概念。通过定义历史场变量函数,在相场演化方程中引入了能量阈值。该模型实现了对韧性断裂行为的准确预报。交替法求解断裂相场模型效率偏低。针对这一问题,本文提出了基于BFGS拟牛顿算法的整体法求解方案,给出了这一方案在商业有限元软件ABAQUS中的具体实现方法。通过典型算例,对比了该求解方案与交替法求解方案的计算效率。结果表明,这一整体法求解方案在保证计算结果准确的前提下,能够将计算效率提高一个数量级。然后,本文对多孔弹塑性材料的韧性断裂行为进行了研究。实际的铝合金等金属材料的内部是存在孔洞的,其变形受到孔洞演化的影响。其内部的微观孔洞结构及其演化在宏观上体现为塑性变形受静水压应力的影响。针对这一现象,本文基于GTN塑性理论,建立了描述多孔弹塑性材料韧性断裂行为的断裂相场模型。模型采用了本文提出的BFGS整体法求解方案进行数值实现。通过典型算例,讨论了该模型中历史场变量的形式对裂纹相场演化的影响。通过与实验结果的对比,证明了该模型对多孔弹塑性结构件韧性断裂行为的准确预报能力。最后,针对多孔弹塑性材料的复杂微观结构,研究了其细观代表性体积单元的断裂行为。分别取三种不同尺度的含孔洞代表性体积单元,在不同的断裂能体积密度下,研究了其断裂行为。结果表明,代表性体积单元的断裂行为具有明显的尺寸效应。断裂能体积密度较小时,弹性能足以驱动裂纹演化,材料发生脆性断裂。随着断裂能体积密度的增加,弹性能不足以驱动裂纹演化。此时,弹性能和塑性功共同驱动裂纹演化,材料由脆性断裂转为韧性断裂。本文为多孔弹塑性材料的断裂行为预报提供了重要的理论支撑和高效的计算方案。
其他文献
多孔材料因具有比强度高、比重低、吸能、隔热、隔音等优异的性能,在近几十年间快速发展成为一种新型工程材料,已经广泛的应用于航空航天、汽车工业、生物医学、冶金、化工以及能源电池等领域。但是多孔材料内部的孔隙在为其带来优异特性的同时,也使其刚度和强度变得难以预测,因此如何准确的预测多孔材料的宏观刚度和强度对其进一步的发展和生产应用有着重要的意义。本文构建了孔隙随机的多孔材料细观有限元模型,并以此为基础对
核心素养是学生必备的素养,在小学数学学科中,核心素养主要包含数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析等方面,其中直观想象占据着重要位置,也从侧面反映了几何直观教学在数学教学中的作用。基于此,文章就几何直观的本质以及核心素养视域下小学数学教学中几何直观的实践策略进行了研究,希望对实际的小学数学教学有所启示和帮助。
316LN不锈钢因其良好的抗晶间腐蚀、耐疲劳、抗蠕变等性能被广泛应用于舰艇核动力装置等设备的管路系统。舰船在战斗过程受到非接触空中和水下爆炸冲击载荷作用,引起管路变形响应甚至断裂失效。而目前对316LN材料的动态力学性能比较匮乏,同时对管路系统的冲击响应研究多集中在地震载荷等弹性响应小变形阶段。基于以上背景,通过实验和壳单元模型时间历程分析模拟相结合,研究了316LN典型管路部件和系统在弹性变形、
天山造山带是研究陆内造山作用的天然试验场,受印度-欧亚板块碰撞远程效应影响,南北天山地震带发生板内构造作用,产生了强烈的地震活动性,这使得进一步理解和认识天山造山带深部结构及盆山耦合关系尤为重要。背景噪声成像不受天然地震分布限制,利用连续、稳定的噪声信号实现了对地下介质三维速度结构的反演。本文以中国境内的天山中段及邻区作为研究区,利用布设在该区域(40°-49°N,79°-93°E)的新疆台网、哈
空间天线结构的发展越来越趋于大型化和柔性化,大型可展开环形桁架结构是一种较为理想的结构形式,近年来应用广泛。然而大型环形桁架具有柔性和非线性特性,在空间环境激励下容易产生复杂的动力学行为,而且振动难以衰减,有必要对其进行动力学研究。对于大型复杂结构,有限元方法存在建模复杂、自由度高等缺点,本文采用连续体等效的方法,建立了环形桁架的等效动力学模型,研究了结构的固有特性和动力学响应,对环形桁架结构的动
随着复合材料越来越广泛地应用于汽车船舶、医学军事、电子产品、压力容器等工业领域中,特别是航空航天、风力发电等特殊领域中,复合材料的使用占比已经成为了衡量结构设计先进水平的一项不可忽视的指标。以航空领域为例,由于复合材料具有高比强度、高比刚度、性能可设计性等优点,使得其在飞机结构占比中越来越高。对于中服役的飞行器,其所包含的复合材料结构零件不仅在生产制造、加工装配、维修使用等各个环节中容易受到各类冲
超空泡导弹潜射出水过程是超空泡武器水下发射的重要组成部分,导弹在出水过程中由于所处介质环境的不断改变与空泡的不断演变、溃灭,使得弹体受到很大的非定常、非线性的作用力,这对弹体结构产生很大的影响甚至会导致弹体结构的破坏与内部控制系统的失灵。由于导弹出水过程中弹体的变形与振动和流场之间的相互作用不可忽略,因此常规的基于刚体假设的研究方法不再适用。本文采用数值模拟的方法,研究了超空泡导弹出水过程的流体动
<正>直观想象能力是数学核心素养的重要组成部分,指通过空间想象能力和几何直观表现,感知事物的发展变化规律,利用空间形式,尤其是图形的理解力解决数学问题的素养,其中直观想象能力就包含几何直观能力,因此,几何直观能力是小学生发展数学核心素养的一种重要能力。小学高年级是培养学生几何直观能力的起点,这个阶段的学生处于具体运算时期向形式运算时期的转变过程,学生的抽象思维在逐步萌芽阶段,结合其直观思维已经能独
旋转机械是现代工业的重要组成部分,航空、航天、船舶等诸多重要的工业领域都离不开旋转机械。由于高温、高压、重载的恶劣运行环境,轴承、齿轮等关键部件在运转过程中很容易出现故障,严重威胁设备的运行安全。因此,研究复杂信号以及多故障模式下旋转机械的故障诊断问题对提高设备运转的可靠性和安全性具有重要意义。本文以旋转机械中的关键部件为研究对象,基于Transformer开展故障诊断相关问题的研究,重点研究含噪