基于图嵌入和概率图聚类的众包真值推理方法研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:tao009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众包技术通过整合互联网上的大众标注来完成计算机难以处理的问题,为工业界和学术界带来了巨大变革,在情感分析、实体解析、文本翻译等领域发挥了重要作用,为机器学习领域提供了高效的标注数据获取手段。然而,由于众包平台的开放性和隐私保护政策,众包标签往往存在噪声且缺乏先验信息。如何从噪声标签中提取正确的标签(称为真值推理)具有重要的研究和应用价值。本文围绕众包真值推理的单选问题开展相关研究,主要内容如下:(1)基于图嵌入的真值推理方法研究(TIGE)。针对现有概率图真值推理研究仅关注浅层概率信息而忽视了深层关系信息的问题,提出一种基于图嵌入的真值推理方法。该方法将真值推理与图自编码器结合来挖掘深层的众包关系信息。首先将众包任务与工人构建为图节点、工人的标签构建为边,通过优化模型(Optimization Model)初始化节点特征;然后通过图卷积将节点特征编码为低维的图嵌入表征信息,以一种新的解码方式预测边标签,通过预测边和原边重构损失并训练参数,最终使用图池化获取真值标签。实验结果表明,TIGE在准确率上优于经典真值推理算法,尤其是在低质量数据集上有较大优势。(2)基于概率图聚类的真值推理方法研究(TIPGC)。针对现有聚类真值推理研究忽视了工人能力差异的问题,提出一种基于概率图聚类的真值推理方法。该方法采用一种无先验参数的概率图模型获取众包工人权重,利用权重构建更合理的聚类特征,以此将工人能力差异纳入模型考量。然后使用K-Means算法将众包任务聚类到多个簇中(簇的数目应与类别数相同),在分类类别和簇之间建立一一对应的关系,为不同簇中的任务分配不同的真值标签。十二个真实数据集上的实验结果表明,与经典众包真值推理算法相比,TIPGC具有更高的准确率和更强的普适性。
其他文献
视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,视频质量评价应运而生。其目的在于通过构建计算机数学模型来衡量视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果。在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景。本文主要针对使用较多的自
学位
行人轨迹预测是计算机视觉领域的一个热点方向,在无人驾驶、智能交通、智慧城市和机器人自动导航等领域具有较为广泛的应用。基于传统统计模型的方法受限于人工确定的行人运动特征,并且缺乏在复杂拥挤环境中能通用的模型。近年来,基于深度学习的轨迹预测模型,凭借高效的特征提取方法、出色的可移植性、应用面广等优势而成为主流,但现有研究工作仍然存在两点不足:行人运动的不确定性对行人轨迹预测十分重要,然而大多数基于深度
学位
时间序列预测在许多工业和商业应用中发挥着重要作用,例如金融市场、网络流量、天气预报和供水行业等。在这些场景中,人们可以利用大量关于过去行为的时间序列数据来预测将来的值。水是经济和社会发展的重要因素,它在工业生产、居民生活和生态保护等许多方面都有着重要影响。传统的供水系统中缺乏对供水数据进行有效的分析,而深度学习技术可以对数据进行深入的挖掘与利用,并分析数据中潜在的规律性。因此,结合深度学习模型对供
学位
随着国家对于历史文化的日益重视,数字化遗产保护已经成为计算机应用领域的热点问题。很多学者将目光聚焦到了古建筑三维场景生成领域,徽派村落作为中国传统建筑的一个重要分支,是古建筑场景的典型代表,影视、游戏和虚拟现实应用内容在徽派风格场景均有充分的需求。另一方面,布局是三维场景生成的前提条件,而传统村落如徽派风格村落由于历史、风俗等复杂因素,其布局一直是传统建筑保护领域的研究热点,难以量化规则。在此背景
学位
随着制造工艺的精进,静态功耗逐渐成为路由器的主要功耗来源之一。同时为了解决片上网络中长距离多跳传输带来的高延迟和高功耗,将无线通信技术加入片上网络芯片中,从而产生了无线片上网络。无线收发器的加入和布置,使得无线片上网络中的流量更加不均衡,普通的路由技术不考虑拥塞信息,加剧了片上网络的拥塞,使得网络很快达到饱和。基于以上发现及考虑,本文针对NoC提出高效的功率门控策略,针对Wi NoC的拥塞问题提出
学位
表情作为人类一种非语言交流方式,相比起语言交流方式,表情更能直接地反映一个人内心真实意图和心理状态。如何使计算机读懂人类表情,进行更加有效的交流成为人机交互领域的一项重要课题。人脸表情的表达是面部肌肉协同运动的结果,是一个动态变化的过程:相较于静态人脸图像,视频序列记录了表情发生的完整过程,对人脸表情的描述更加真实准确。人脸表情很大程度上是通过与表情相关的人脸关键区域的动态变化来完成,如何改善使其
学位
多变量时间序列(Multivariate Time Series,MTS)分类致力于将具有多个变量和时间属性的数据划分到预定义的类别之中,在金融、医疗、人类活动识别等领域发挥着重要作用。但MTS分类任务中存在许多问题,例如MTS中变量之间存在着复杂的关系特征难以捕捉,样本间存在的潜在关系特征易被忽视,标注的MTS数据少等问题。提取关系特征为分类任务提供更多的关键特征具有重要的研究和应用价值。本文围
学位
近年来,动作捕捉技术已经广泛地应用于影视制作、游戏、康复医疗和体育竞技等领域中。专业动作捕捉系统能够获取精确的人体运动数据,但是价格昂贵、需要较大的采集空间和复杂穿戴过程,难以为普通消费者所用。伴随着虚拟现实技术的快速发展,市场上将涌现更多的体感应用和游戏,将对通过价格低廉的动作捕捉设备获取高精度人体姿态信息的方法产生广泛的需求。本文基于可见光相机、Kinect和IMU传感器,提出了多模态多阶段去
学位
伴随着数字化城市管理的快速发展,三维模型的场景应用愈加广泛,因此针对三维模型的快速建模,和对其动态可视化的探索是具有研究意义的。城市路网的模型是一直以来的研究热点,其中,立交结构是路网中结构复杂的部分,探索面向立交结构的路网模型的快速生成是当前研究的难点;在此基础上,提升三维场景的展示效果,研究关于三维模型场景的动态可视化也具有一定的研究价值。本文对于复杂立交结构模型的快速建模、交互编辑和针对三维
学位
近年来,基于视觉的同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术被应用于移动机器人、虚拟现实等领域,通过相机构建出环境地图并感知自身定位,为自主导航、虚拟交互等技术提供前提条件。环境中的动态物体会影响视觉SLAM系统的精度,通过图像分割技术分割出场景中的语义物体,能够为SLAM系统剔除动态物体提供帮助。而在图像分割中容易出现漏分割现象,使
学位