论文部分内容阅读
摩擦与磨损在一切带有运动部件的机械系统中几乎是不可避免的,它们常常是造成能量损失、机械故障和效率低下的主要原因,降低宏观机械运动界面间的摩擦磨损对能源节约具有重要的意义。为了减少摩擦的不利影响,人们试图通过使用不同的固体或液体润滑剂来改善摩擦表界面的配合状态,摩擦表界面的调控对整个摩擦学系统起着至关重要的作用,系统地认识摩擦表界面结构演化对从本质上揭示材料摩擦学行为具有重要意义。本文基于聚晶金刚石(PCD)拥有微米级多晶的结构特性进行研究,PCD在摩擦的过程中,微米级金刚石颗粒的解理伴随着金刚石颗粒的剥落,并逐渐演变成纳米金刚石以及纳米层状堆垛结构,为纳米尺度下实现非公度接触状态提供了多微凸体的优势,是设计实现超低/超滑摩擦界面的理想材料。本文通过系统探究聚晶金刚石对磨陶瓷材料摩擦表界面的结构演化机制,分析了金刚石颗粒向纳米金刚石、纳米层状洋葱碳以及石墨烯纳米片层的演变,揭示了界面材料的结构演化对聚晶金刚石摩擦学性能的影响。从本质上认识了聚晶金刚石与陶瓷材料界面间纳米层状材料以及纳米颗粒在界面的形成对实现界面局部非公度接触的作用,对实现稳定的宏观超滑具有重要意义。由于宏观尺度超滑的实现具有挑战性,界面结构演化的揭示对设计实现宏观尺度稳定超滑提供了思路,基于以上研究,本文的主要结论总结如下:(1)聚晶金刚石的减摩耐磨设计对其宏观应用的重要意义,聚晶金刚石与不同配副材料对磨时,由于摩擦不同的界面配合状态以及碳原子重杂化过程,导致不同的摩擦学行为。(2)揭示了界面胶体层的形成机制、胶体层内部纳米金刚石的演变过程、多层石墨烯纳米片以及纳米洋葱状富勒烯之间的相互作用以及结构重组机制。(3)揭示了金刚石颗粒的剥落、微米级金刚石向纳米金刚石的演变;揭示了金刚石相变导致其表面无序化的sp~2-C层的形成,无序化sp~2-C团簇逐渐向有序层状结构的演变、多层石墨烯纳米片的形成、以及纳米洋葱状富勒烯的形成,这些结构演变伴随碳基摩擦膜的形成;建立了碳基摩擦膜的形成与超低/超滑摩擦学行为之间的联系。