杂原子对苯并噁嗪树脂的构建及聚苯并噁嗪碳材料性能的影响规律研究

来源 :中国科学院大学(中国科学院宁波材料技术与工程研究所) | 被引量 : 0次 | 上传用户:yjg020
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为一种新型的热固性树脂,苯并噁嗪树脂因其优异的性能而备受关注。然而苯并噁嗪同样面临许多亟待解决的问题,如取代基对苯并噁嗪单体的固化行为及对聚苯并噁嗪氢键体系的影响通常被割裂地进行研究,缺乏有机且统一的认识,而涉及杂原子取代基同时对苯并噁嗪树脂的固化行为及氢键体系的影响研究则更是未见报道,此外,苯并噁嗪树脂还面临着应用领域较小的困境。进入21世纪以来,随着工业的不断发展,不可再生的石化资源被大量地开采使用,而由此导致的环境危机同样日趋严重。因此,系统地开展用生物基高分子材料替代石油基高分子的研究工作
其他文献
随着能源与环境问题愈加凸显,人们对清洁能源的研究兴趣也日益增加。锂电池凭借其独特的优势成为了新能源存储与转化的理想体系。然而,传统的锂离子电池受限于其自身的容量和能量密度已无法再满足将来市场的需求。作为新型锂电池,锂-硫电池(LSBs)因具有超高的理论放电比容量和能量密度,加上硫含量丰富、价格便宜而引起了科研工作者的广泛关注。但是,因为活性物质硫和放电终产物硫化锂的绝缘性以及中间产物多硫化锂在电解
学位
随着居民生活水平提高和环保观念日益加强,寻找新型制冷方式替代传统气体压缩制冷的需求变得迫切。以磁制冷为代表的固态制冷技术以其环保、高效等优点成为了新型制冷方式的热门候选。具有磁热效应的磁性材料体系和数量庞大,且磁热材料的性能与其显微组织密切相关。以具有Na Zn_(13)结构的La-Fe-Si合金为代表的稀土基磁制冷材料显微结构对凝固速率敏感、易偏析,当需要筛选出最有利于获得大磁热效应的凝固组织时
学位
使用可降解高分子是解决塑料污染问题的有效途径之一。随着对可降解材料的需求领域逐步扩大,人们希望它能具有接近或超过现有通用塑料的物理性能。然而现有的可降解高分子多由脂肪族单元构成,缺乏刚性的芳香环单元,因此力学、气体阻隔、耐热性能等相对较差。对此,本课题利用生物基芳香单体2,5-呋喃二甲酸(FDCA)的刚性大、具有极性等特征,共聚引入多种脂肪族降解单元,以制备兼具优异力学性能、气体阻隔性能、弹性、快
学位
聚丙烯是一种低密度、耐化学腐蚀、耐高温且具备较好的力学性能的材料,对这种材料的开发和利用已经非常丰富,其被广泛的应用在纤维、薄膜、注塑消费品、工业应用、汽车零部件等领域。相比聚丙烯本体及其改性材料,以聚丙烯为基体的发泡材料仅占非常小的比例,主要原因在于:聚丙烯的结晶特点带来的熔体强度低使得可发泡加工温度区间狭窄,因此需要高枝化或宽分子量分布的聚丙烯原料;聚丙烯发泡的加工装备加工工艺要求高,研究相对
学位
聚合物太阳能电池(PSCs)因其质量轻、环境友好、低成本和适合制作可穿戴设备等特点,成为了清洁可再生新能源领域的重要研究方向。经过几十年科研人员的不断探索和努力,在新材料合成设计及新制备工艺等研究方向上均取得巨大突破。迄今为止刚性二元和三元PSCs的能量转换效率分别突破16%和17%;柔性单节PSCs也突破15%大关。为了进一步推进PSCs商业化进程,实现研产结合的目标,应该持续不断针对刚性和柔性
学位
设计制备具有高度可折叠/可拉伸等变形能力的柔性太阳电池对柔性/可穿戴电子及其集成化具有重要意义。但在亚毫米极端曲率半径下折叠或较大应变下拉伸条件下,太阳电池器件内易形成裂纹或者膜层发生剥离,使得器件性能衰减甚至失效,因此构筑具备高度可折叠/高可拉伸特性的高效太阳电池极具挑战。本论文围绕高度可折叠/可拉伸的高效太阳电池设计、制备和性能提升,系统展开了可折叠纸基聚合物/钙钛矿太阳电池、剪纸设计超高拉伸
学位
四面体非晶碳(tetrahedral amorphous carbon,简称ta-C)表面光滑、结构致密,具有优异的机械性能和化学稳定性,在摩擦、电化学等领域展现出广阔的应用前景。然而在复杂苛刻工况下ta-C薄膜的减摩耐磨防护特性面临巨大挑战,例如船舶舰艇动力零部件和人体植入医疗器件等面临着摩擦与腐蚀耦合作用,热辅助磁存储和精密玻璃成型等同时受到摩擦与高温作用。针对上述问题,本文开展了用于苛刻工况
学位
聚丙烯(PP)发泡材料具有轻质、耐热性佳、可回收及易降解等优点,是聚合物发泡材料中发展较快的一种新型环保材料,拥有广阔的应用前景和市场空间,但其高速发展的同时也面临着许多挑战,例如如何克服材料的易燃特性、如何在材料内部设计及制备复杂泡孔结构等。近些年来,尽管单独围绕PP阻燃改性或发泡行为的研究层出不穷,但是如何平衡PP发泡材料在轻量化、阻燃行为和机械性能之间的关系一直是研究的难点,因此针对阻燃PP
学位
高效地发展性能更加卓越的材料,即性能之有效提升,是材料研究中的核心挑战之一。对于用远离平衡态的加工手段(如薄膜之低温气相沉积、淬火、快速凝固等)所获得的材料而言,性能之提升多数情况下还难以全程采用理性开发方法。低温沉积的薄膜材料之性能提升,主要是采用经验工艺开发方法,其成本较高而效果不彰。本论文旨在发展一种基于物理理解的理性工艺开发方法,以突破“薄膜材料性能之有效提升”的难题。为此,我们选择了工业
学位
设计应用如此广泛,其作用如此重要,但是,目前对设计的研究,多数研究都是站在一个狭窄的研究领域,认为“设计”就是造物之前的一个阶段,以后进入到生产和流通以至消费环节,主要是技术在发挥作用,都与设计毫无关系。这种对“设计”的狭窄化的理解,影响了设计的实践。因此,本研究致力于超越这种对“设计”的狭义的理解,以设计哲学为视角,将产品设计看作是一个动态的全生命周期展现的过程,从设计是产品的灵魂、是贯穿产品设
学位