【摘 要】
:
本篇论文包括两方面内容:第一部分是中能重离子碰撞核子-核子非弹性散射介质效应的研究。另一部分是重离子碰撞核反应的热平衡的探测。由于对称能项是非对称核物质状态方程重要的一项,研究对称能有利于获得更准确的核物质状态方程。不仅如此,对称能也会对中子星等极端丰中子物质产生重要影响。中子星合并,超新星爆发和重元素合成等天文现象都与对称能有关。实验上主要是通过观测对称能敏感观测量来研究对称能,比如中质比、-?
【机 构】
:
中国科学院大学(中国科学院近代物理研究所)
【出 处】
:
中国科学院大学(中国科学院近代物理研究所)
论文部分内容阅读
本篇论文包括两方面内容:第一部分是中能重离子碰撞核子-核子非弹性散射介质效应的研究。另一部分是重离子碰撞核反应的热平衡的探测。由于对称能项是非对称核物质状态方程重要的一项,研究对称能有利于获得更准确的核物质状态方程。不仅如此,对称能也会对中子星等极端丰中子物质产生重要影响。中子星合并,超新星爆发和重元素合成等天文现象都与对称能有关。实验上主要是通过观测对称能敏感观测量来研究对称能,比如中质比、-?+比等。但是这些探针,特别是-?+比,也会受到其他效应的影响,比如核子-核子非弹性散射的介质效应会直接影响π介子的产生。如果能找到探针把非弹性散射介质效应约束好,以后就可以更好地研究对称能,就可以得到更准确的非对称核物质的状态方程,就能够对中子星的性质有更好的了解。本论文利用同位旋相关的Boltzmann-Uehling-Ulenbeck(BUU)输运模型,研究了中能重离子碰撞中的核子-核子非弹性散射(主要是低能和中能的介子产生)。研究表明,在较高的核子动能下,核子-核子非弹性散射的介质约化降低了中子-质子比n/p。虽然核子-核子非弹性散射的介质修正也影响-?+比的值,但考虑到介质中共振态和π介子的一系列未确定性质,高能中子-质子比n/p更适合于探测核子-核子非弹性散射的介质修正。本论文的第二个工作是通过在BUU程序中依次使用两种形式的平均场势,找到重离子核反应热平衡的探针。两种形式的平均场势分别是BUU程序中使用的一般核子-核子相互作用势,另一种是静态核物质积分势。通过对结果进行对比,发现中质比可以作为热平衡的探针。
其他文献
11B(p,γ)12C反应发生在原初核合成和恒星氢燃烧过程中。鉴于该反应并非上述相应过程中考量的关键核反应,所以目前为止并没有被详尽地研究。然而,假入我们想要深入研究诸如原初核合成过程中碳、氮、氧精确产额之类的问题,该反应将会变得非常重要,因为原初气体中碳、氮、氧含量的多少对第一代恒星的演化具有重要的影响。本文利用薄靶实验方法,在Ec.m.=130–257 keV能区首次直接测量了11B(p,γ)
X射线暴是宇宙中最常见的热核爆发现象,而14O(?,p)17F反应在爆发模型中扮演着至关重要的角色。X射线暴理论模型研究指出,14O(?,p)17F是αp过程中非常重要的反应,其反应率灵敏度将对X射线暴的光曲线产生显著影响。由于各家实验数据存在较大分歧,导致无法得到可靠、精确的反应率。至今,X射线暴模型采用的14O(?,p)17F反应率仍然是基于比较老的实验数据得到的。为了得到更加精确的反应率,我
本实验通过25Al+p共振弹性散射实验对X射线暴过程中一个重要的核天体反应22Mg(α,p)25Al进行了间接测量。X射线暴是X射线双星系统中X射线突然增强很多倍的现象,其核过程包括3α反应、αp突破过程以及rp过程等。而αp过程中所有(α,p)反应的反应率都直接影响着X射线暴光变曲线的上升时间甚至光变曲线的整体形状。Cyburt X射线暴模型计算结果显示,在所有的(α,p)突破反应中,22Mg(
高能量密度态通常被定义为能量沉积密度高于1011J/m3的物质状态。高能量密度物理(HEDP)就是针对该状态下物质的结构及特性进行研究的新型交叉物理学科。目前,实验室中产生高能量密度物质/温稠密物质的方式主要包括激光/重离子束驱动或Z-pinch驱动,其特点是维系时间短(<1μs),空间分布不均匀且材料多样化。因此,亟需一种具有高空间分辨能力(<10μm)和高密度分辨(1%)的超快诊断技术以获取H
2030年前实现碳排放达峰、2060年前实现碳中和,是习近平总书记和党中央高瞻远瞩作出的重大战略决策,是中国对国际社会的庄严承诺。绿色金融是金融服务实体经济的重要着力点,在加快推进经济绿色低碳发展、促进我国经济社会发展全面绿色转型、努力实现"零碳经济"的远景目标方面发挥着重要的催化、支持和助推作用。
重离子加速器是一个复杂而庞大的大型装置,包含着大量的大功率脉冲电源、高频腔等众多电能转换设备。在加速器运行的过程中,设备电磁能量的快速变化产生了较强的电磁干扰噪声,形成复杂多变的电磁环境,对加速器设备及系统的可靠性有一定影响。随着加速器技术的进步,重离子加速器朝着高能量,高流强的方向发展。2018年,“十二五”国家重大科技基础设施“强流重离子加速器装置(HIAF)确定在广东惠州建设一台国际领先的强
长期深空载人飞行过程中,空间辐射、微重力等环境因素可导致航天员严重的机能紊乱或不可逆损伤。研究电离辐射、微重力、两者复合作用对红系分化的影响及药物的防护效果对正确认识和缓解“航天贫血症”具有重要意义。本论文以氯化高铁血红素诱导分化的K562细胞为红系分化模型,研究电离辐射(12C6+、X射线)、地面模拟微重力效应对红系分化的影响机制及硫辛酸的防护效果。主要的研究内容如下:1.K562细胞红系分化模
兰州重离子加速器(Heavy Ion Research Facility in Lanzhou,HIRFL)是我国第一台集加速、累积、冷却、储存、内外靶实验及高分辨粒子探测于一体的大型重离子同步加速器装置。其中,磁铁电源系统是HIRFL重要组成部分,其主要为磁铁提供特定的励磁电流,以产生加速器所需要的磁场。磁铁电源内部的直流电流传感器(DC Current Transducer,DCCT)和模数转
中国科学院近代物理研究所承担的十二五强流重离子加速器装置(HIAF)将采用移动式脉冲高频(Moving Barrier Bucket)堆积方案,该方案克服了传统注入方式由于空间电荷效应所导致的束流损失,是突破传统束流堆积方式瓶颈、提高重离子流强的有效方法。由于Barrier Bucket(BB)堆积方法对高频电压波形极其敏感,电压波形的畸变会导致束流的品质下降,因此需要研究高频低电平系统对BB电压
高平均流强、高重复频率的电子枪具有广泛的应用,在用于医学和辐射的粒子加速器领域有着重要的地位。本文设计了一种325MHz工作于CW模式的微波栅控高压型电子枪,该电子枪放置于-300kV高压平台,产生的高频束流经进一步调制后注入超导电子直线加速器。该加速器能够产生高平均流强、高平均功率的电子束流用于生产高原子序数的医用同位素。本论文的主要工作是完成了该电子枪的结构设计、电路系统设计、高频微波传输器件