高比例新能源电力系统电压源型变流器同步稳定性分析与控制技术

来源 :浙江大学 | 被引量 : 0次 | 上传用户:zhang3862066
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现代电力系统中新能源的大规模接入,以电压源型变流器为代表的电力电子装备在电力系统中急剧渗透,逐渐取代传统机电能量转换装备,正在深刻地改变着现代电力系统形态。电力系统的电力电子化将造成电力系统网络特性的深度转变,长期形成的关于电力系统稳定分析的基础理论与关键技术难以适用,无法揭示并解决电力电子化电力系统的安全稳定问题。电力电子装备作为电力系统的重要功率变换装备,其自身的控制技术与稳定分析是当前学术界与工业界共同关注的热点问题。然而,囿于电力电子装备的多样类型与复杂控制,装备本身的动态特征以及稳定机
其他文献
核电厂需要超大容量4000Ah级铅酸电池。核级电气设备分类为核安全等级(简称为1E级)与级外设备。超大容量铅酸电池与堆芯的应急冷却设备相连接,属于1E级设备。国内外核电厂内,阀控式铅酸电池的非1E级应用仍处于起步阶段。阀控式铅酸电池的1E级应用,国内外尚属首次。4000Ah级阀控式铅酸电池1E级应用的研究成果,属于填补国内外行业空白。电化学阻抗谱预警技术是材料电化学与电力电子学互相融合的研究方向。
学位
为落实“2030碳达峰”和“2060碳中和”的目标,我国在“十四五规划”中明确提出,建设清洁低碳、安全高效的能源体系,大力提升风电规模。风力发电处在前所未有的发展机遇的同时,高比例新能源、高比例电力电子设备的发展趋势也给电力系统安全运行带来了新的挑战。传统基于功率控制策略的双馈风电不具备电网构建和支撑能力,含高比例新能源的电力系统将因旋转惯量和备用容量较少而导致系统稳定性下降。此外,电力电子变流器
学位
柔性直流输电技术已广泛地应用于大规模新能源并网、远距离电力输运、非同步大电网互联等重大工程,且朝着更高电压等级、更大系统容量、更多网络节点的态势迅速发展。压接式功率半导体模块具有寄生参数小、双面散热快、串联运行易等显著优势,已成为柔性直流输电系统中换流阀和直流断路器等核心装备的优选封装结构。然而,压接式功率半导体模块内部的电-磁-热-力多物理场强耦合,且机械力的交变特征直接决定温度场的分布规律,对
学位
传统的调度方式基于确定性优化,缺乏对可再生能源出力不确定性的认识,面对高比例可再生能源的接入,电力调度部门必须采用保守的发电计划,从而降低了常规机组发电效率,也影响了对可再生能源的有效接纳。本文在可再生能源出力不确定性准确建模的基础上,提出了电力系统多阶段鲁棒优化调度方法,在模型中扩充储能、综合能源等灵活性资源的优化空间,所得到的调度计划在满足极端场景运行的同时更为经济合理,对于加强运行人员对调度
学位
LLC谐振变换器具有高效率、高功率密度等优点,被广泛应用于新能源发电、电动汽车、服务器电源等热点应用中,且其中相当多的场景要求变换器具有宽增益范围调节能力。然而,传统LLC变换器的增益调节能力有限,难以在实现宽增益调节能力的同时兼具高工作效率。提升LLC变换器在宽增益范围下的工作效率,特别是对于中高功率系统,能提升设备性能及系统可靠性、降低电能损耗并带来显著经济收益。本文以中高功率宽增益范围LLC
学位
随着新能源发电产业的快速发展,风电在能源供给的地位日渐重要,其中基于双馈感应电机(Doubly fed Induction Generator,DFIG)的风电系统凭借其变流器容量小、运行控制灵活的优点成为了风电系统的重要机型。风电机组和电网之间的交互作用所引发的宽频振荡问题,是当前影响风电并网稳定运行的关键问题之一。风电机组并网运行的高频振荡作为互联系统稳定性问题之一,其对应的抑制技术的是当前风
学位
电力系统的安全稳定运行是向用户持续可靠供电的前提,随着区域间电网互联以及远距离大容量输电系统的大量建成,特高压交直流输电系统输送功率的持续增加、风电/光伏等可再生能源的快速发展等因素的影响,电力系统安全稳定将面临更严峻的考验,电力系统稳定性分析与控制方面的研究也得到了广泛关注。本文的研究重点为基于多项式逼近方法的参数化的暂态和中长期稳定性分析及控制问题,即将诸如上述影响电力系统运行状态和稳定性能的
学位
随着风电、光伏等新能源在电力系统中的占比逐渐提高,高比例新能源正成为电力系统发展的重要趋势和关键特征。以电力电子为接口的新能源并网设备(后文称之为“变流器”)显著改变了以同步机为主导的电力系统的特性,交流电网逐渐呈现弱电网特征。目前,变流器广泛采用锁相环与交流电网同步连接,当锁相环型变流器接入的电网强度较低时,设备与设备间、设备与网络间呈现强耦合,其相互作用可能导致锁相失败从而发生小干扰同步失稳。
学位
目前,我国正处于能源结构转型升级的关键时期,为了实现可再生能源的大范围合理配置和高效利用,基于模块化多电平换流器(Modular Multilevel Converter,MMC)的柔性直流输电技术受到了工业界和学术界的广泛关注。目前,柔性直流输电技术的进一步发展与大规模工程应用主要受到以下几个关键技术问题的制约:(1)换流器轻型化问题;(2)直流故障处理问题;(3)交直流系统功率耦合问题。针对上
学位
近年来,锂离子动力电池由于具有自放电率低、能量和功率密度高等优势,目前已被广泛应用于电动汽车的储能系统中。尽管其具有上述优点,为了确保动力电池系统能够安全可靠地运行,车载电池管理系统仍有必要对动力电池的基本工作状态,包括电压、电流和温度进行实时地监测。此外,动力电池的一些关键参数和状态变量,例如开路电压(Open-Circuit Voltage, OCV)、阻抗参数、荷电状态(State-of-C