论文部分内容阅读
放射性次级束装置是用于产生、分离、纯化和研究放射性核束的装置,利用放射性核束可以开展物理、材料、生物等领域的科学研究工作。目前,国内外已有许多正在运行、建造或计划建造的放射性核束装置。
HFRS是HIAF装置上基于In-flight方法产生放射性核束的装置,典型238U束能量可达800MeV/u,流强3×1011pps。它由预分离器和主分离器组成,初级束在预分离器中轰击薄靶得到次级束,并进行初步分离,随后传输到主分离器中进一步的分离和纯化。此外,还可以在主分离器中安装次级靶,开展二次反应的研究。它的另一种运行模式为普通传输线模式,即将BRing中的主束直接传输到SRing中。
HFRS可加速的粒子种类多,能量及流强高,且运行模式多样、束损分布广。其产生的次级辐射场瞬时剂量率可达1012μSv/h量级,高活化部件(初级靶、Beam dump)表面剂量率可达106μSv/h量级,这对装置的屏蔽设计、设备保护及部件维修等提出了挑战。
论文首先从中子能谱、屏蔽计算及活化分析几个方面对比了蒙卡模拟、实验数据以及经验公式的结果,表明了FLUKA程序在中高能重离子加速器中防护计算的适用性。接着从HFRS运行模式出发,结合束流、产生靶参数及剂量率控制目标,分别完成了预分离器和主分离器的屏蔽设计。前者采用局部屏蔽(铁)与整体屏蔽(普通混凝土)+回填砂土结合的方案,后者采用整体屏蔽+回填砂土的方案。同时根据辐射源项结果,提出了设备保护方案,为束诊设备及抗辐射磁铁的设计提供了指导。另外,采用FLUKA程序和ANSYS程序结合的方法,初步完成了HFRS束流垃圾桶的设计,为未来涉及高功率装置的束流垃圾桶的设计和优化打下了良好的技术基础。最后,研究了加速器部件、空气、环境介质等的感生放射性水平,提出并解决了高活化部件维修转运问题,完成了工作人员和公众辐射剂量评价和环境影响分析。论文中分析比较了不同价态离子在蒙卡程序磁场模型中的输运,以及对辐射源项分布的影响,具有一定创新意义。
相比较于普通加速器装置,放射性次级束装置的防护设计更为复杂,国内鲜有报道。本工作的完成推动了HIAF项目的顺利开展,为HFRS的辐射防护设计和建设项目的辐射环境影响评价提供了不可或缺的源头基础和依据,文中的研究方法、结果等也可为同类型装置提供重要参考。
HFRS是HIAF装置上基于In-flight方法产生放射性核束的装置,典型238U束能量可达800MeV/u,流强3×1011pps。它由预分离器和主分离器组成,初级束在预分离器中轰击薄靶得到次级束,并进行初步分离,随后传输到主分离器中进一步的分离和纯化。此外,还可以在主分离器中安装次级靶,开展二次反应的研究。它的另一种运行模式为普通传输线模式,即将BRing中的主束直接传输到SRing中。
HFRS可加速的粒子种类多,能量及流强高,且运行模式多样、束损分布广。其产生的次级辐射场瞬时剂量率可达1012μSv/h量级,高活化部件(初级靶、Beam dump)表面剂量率可达106μSv/h量级,这对装置的屏蔽设计、设备保护及部件维修等提出了挑战。
论文首先从中子能谱、屏蔽计算及活化分析几个方面对比了蒙卡模拟、实验数据以及经验公式的结果,表明了FLUKA程序在中高能重离子加速器中防护计算的适用性。接着从HFRS运行模式出发,结合束流、产生靶参数及剂量率控制目标,分别完成了预分离器和主分离器的屏蔽设计。前者采用局部屏蔽(铁)与整体屏蔽(普通混凝土)+回填砂土结合的方案,后者采用整体屏蔽+回填砂土的方案。同时根据辐射源项结果,提出了设备保护方案,为束诊设备及抗辐射磁铁的设计提供了指导。另外,采用FLUKA程序和ANSYS程序结合的方法,初步完成了HFRS束流垃圾桶的设计,为未来涉及高功率装置的束流垃圾桶的设计和优化打下了良好的技术基础。最后,研究了加速器部件、空气、环境介质等的感生放射性水平,提出并解决了高活化部件维修转运问题,完成了工作人员和公众辐射剂量评价和环境影响分析。论文中分析比较了不同价态离子在蒙卡程序磁场模型中的输运,以及对辐射源项分布的影响,具有一定创新意义。
相比较于普通加速器装置,放射性次级束装置的防护设计更为复杂,国内鲜有报道。本工作的完成推动了HIAF项目的顺利开展,为HFRS的辐射防护设计和建设项目的辐射环境影响评价提供了不可或缺的源头基础和依据,文中的研究方法、结果等也可为同类型装置提供重要参考。