生物质与低密度聚乙烯两步法催化共热解制芳烃实验研究

来源 :中国科学院大学(中国科学院过程工程研究所) | 被引量 : 1次 | 上传用户:jjass
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物质作为唯一具有碳源的可再生能源,是广具前景的化石资源替代品,废塑料污染是全球关注的环境问题。以生物质和塑料为原料,采用催化共热解技术制备高品质富芳烃热解油,可以同时实现资源回收与能源转化,具有重要的研究价值和意义。本课题针对传统生物质与塑料催化共热解研究存在的原料间相互作用低、目标产物产率低、操作参数可调变性差(如一步法)等系列共性关键问题,提出了生物质与塑料两步法催化共热解(TSCCP)制备芳烃工艺。基于生物质典型组分的热解特征温度将共热解转化过程分解为低温和高温两步反应,能够有效缓解转化过程
其他文献
能源被认为是世界人口的重要需求,由于人口激增和工业革命,全世界对能源的需求大大增加。几十年来,严峻的环境污染问题和化石燃料减少的趋势不断激励着研究人员,科学家和政策制定者去探索替代能源以满足世界人口对能源的需求。就可再生能源而言,氢(H2)燃料被视为清洁,可持续和环保的燃料。为了减少环境污染问题并增强可再生能源的能源供应和储存,通过电化学电解水分解制氢被认为是重要的可再生能源手段之一,其中借助聚合
学位
石油烃热裂解制备乙烯过程是石化行业的“龙头”。由于热裂解能耗巨大,通过开发新型强化炉管提高过程能效,实现乙烯装置的节能高效运行,将产生显著的社会经济效益。基于新型内构件的炉管强化技术一般通过在炉管局部位置安装各种扰流元件改善管内流型,具有强化效果显著、加工成本低、方便对普通炉管升级改造的优势,逐步成为裂解炉管强化的研究热点之一。本文基于构造协同场的流动控制方法设计强化裂解炉管,采用新型中空立交盘内
学位
复合凝聚体是一种由带相反电荷的大分子,如蛋白质、核苷酸和聚电解质等相互络合形成的软物质结构,普遍存在于自然和生命体系中。利用功能性聚电解质或者生物大分子可控制备新型复合凝聚材料,是近年来高分子材料和软物质领域的研究热点。本文设计合成了两种吡啶二羧酸的双头和三头配体,利用其与不同金属的配位制备了一系列超分子配位聚电解质。利用超分子聚合物结构和性质的可调性,本文构筑了多种不同结构和功能的聚电解质凝聚材
学位
以甲苯和甲醇作为原料选择性生产对二甲苯(PX)的工艺路线,将石油化工和煤化工结合在一起,增加了甲苯和C1资源的利用率。甲苯甲基化催化剂的催化活性、对位选择性和稳定性是该工艺的核心指标,而催化剂的合成和后续改性方法是提高其核心指标的关键。本论文以IM-5和ZSM-5分子筛为改性母体,在阳离子表面活性剂的协助下,采用meso-SiO2、磷物种以及silicalite-1对其表面酸性进行选择性钝化,合成
学位
PNIPAM(Poly(N-isopropylacrylamide),N-异丙基丙烯酰胺聚合物)微凝胶是一类在水中溶胀而不溶解的亲水性高分子交联网络聚集体,已广泛应用于纳米器件、生物医药载体、化工智能分离、智能催化工程等领域。但PNIPAM微凝胶的高功能化、智能化还有待提高,这也成为了它广泛应用迫切需要解决的问题。微凝胶微观相行为、物理化学性质因界面受限而复杂,严重影响了微凝胶高功能性和智能化表达
学位
聚合物塑化过程的强制对流和强化传热过程对聚合物的熔融与塑化具有至关重要的影响,而聚合物塑化均匀性又将直接影响最终制品质量和制品性能,材料塑化不均是导致精密制品缺陷的重要原因。因此对聚合物塑化过程热的有效管理和温差场均匀性的有效控制具有重要的现实意义。本文归纳总结了聚合物塑化理论和场协同原理在国内外的研究现状,并在此基础上,开展聚合物塑化过程流动与传热机理的基础研究,进一步提出了聚合物流动混合过程的
学位
轮胎生产过程需经历多道复杂工序,硫化环节作为最后一道工序,决定了产品的外观质量及使用性能优劣。现行轮胎硫化技术主要依托于轮胎定型硫化机,采用高弹性而低刚性胶囊来确定轮胎内壁轮廓,必然难以获得高度均匀的几何结构及质量分布,导致轮胎动平衡均匀性差。此外,传统轮胎硫化采用蒸汽、过热水加热,轮胎内侧需从导热率极低的胶囊内间接获得硫化所需热量,而且热能在管路循环中存在大量耗散,导致轮胎硫化效率低,能源消耗大
学位
氢能是一种来源广泛,能量密度高,燃烧产物无污染的清洁可再生资源,通过在酸性或碱性条件下裂解水来制备氢能是一种应用潜力巨大的制氢方法,但无论在酸性或碱性裂解水产氢都需要催化剂来加速裂解过程,提高反应效率。贵金属是目前广泛使用的催化剂,但由于贵金属本身储量有限,价格高昂,不利于未来电解水的工业化发展。研究发现在碱性裂解水中,过渡金属的有效选择和利用可以显著减少对贵金属催化剂的依赖。碱性电解水中的析氢反
挥发分的脱除(脱挥)是聚合物生产加工过程的重要环节,聚合物中的挥发分、溶剂及其他杂质的脱除率对产品的质量、性能和环境友好性有重要的影响。高速分散器是一种可用于高黏流体脱挥的过程强化设备,在其离心力和剪切的作用下,高黏流体被分散为大量液丝,可显著增加传质面积和表面更新速率,强化脱挥过程的传质。本文通过对挥发分在脱除过程中的扩散系数、高速分散器内液丝的表面更新、起泡脱挥过程的气泡生长等方面进行实验研究
合成气转化是碳一化学中十分重要的一类工业反应,在调整能源结构、精细化工品生产中扮演着重要角色。由于长链醇用途广泛、需求日益增多,合成气转化直接制备长链醇的反应引起了研究者的广泛关注。在众多催化剂体系中,CuFe基催化剂因其成本低、活性高、较强的碳碳耦合能力成为该反应中的热点催化剂,但是存在长链醇产率低、对界面位点和构效关系认识不足等问题,限制了其进一步发展。本论文针对上述问题,采用层状双金属氢氧化
学位