论文部分内容阅读
随着现代工业的迅速发展,液压泵作为液压系统的动力部件,在工程应用中发挥着不可替代的作用。轴向柱塞泵以其结构紧凑、工作压力高、容积效率高以及容易实现变量等优点而被广泛使用。柱塞泵在液压系统中负载最重且长时间高速运转,致其容易出现各种故障。轻则引起噪声增加、振动加剧,影响工作效率;重则危害人的生命安全、造成严重财产损失。因此对柱塞泵运行状态进行监测,实现其故障诊断,对保障高速运转柱塞泵正常、高效运行意义重大。柱塞泵内部结构复杂,故障类型多样,且同种类型不同程度的故障对泵产生不同程度的影响。尤其在故障的早期阶段,故障信号较为微弱,这些故障信号极易被强烈的背景噪声所淹没,不易察觉,导致故障特征提取和定位困难。针对上述问题,本论文以轴向柱塞泵为研究对象,运用合适的信号处理方法,以早期典型多故障诊断为出发点将不同程度故障诊断作为研究目标,在轴向柱塞泵振动信号中提取故障特征量,对轴向柱塞泵的早期典型多故障和不同程度故障的特征提取与模式识别方法做了深入的研究。论文主要从以下几个方面展开研究:(1)了解轴向柱塞泵内部结构和基本工作原理,分析其典型故障类型及故障振动机理,进而确定故障参量的采集方法。针对斜盘式轴向柱塞泵常见故障设计和搭建试验台,完成正常信号、松靴、柱塞磨损、配流盘磨损、不同程度的滑靴磨损故障信号的采集。(2)针对轴向柱塞泵结构复杂且早期故障易受噪声干扰的问题,本文提出了变分模态分解(Variational Mode Decomposition,VMD)、分位数排列熵(Quantile Permutation Entropy,QPE)和多分类支持向量机相结合的方法对几种典型故障(滑靴磨损、松靴、柱塞磨损和配流盘磨损故障)进行研究。首先将采集的振动信号进行VMD分解得若干固有模态分量(Intrinsic Mode Function,IMF),根据相关系数法进行信号重构;然后计算各重构信号的QPE值作为特征向量;最后将提取的特征向量输入多分类支持向量机进行模式识别。并与其它方法进行对比分析,证明所提故障诊断方法的有效性。(3)针对轴向柱塞泵不同程度磨损的早期微弱故障诊断方法开展研究,其内容包括以下两个方面:1)针对轴向柱塞泵不同程度故障特征相近、难以识别的问题,提出基于局部S变换和ELM的故障诊断方法。采集正常状态和不同程度滑靴边缘磨损状态的振动信号进行局部S变换;然后对不同特征向量组进行定性和定量分析,选择提取S矩阵最大奇异值、转轴振动基频能量占比和柱塞振动基频能量占比共三维特征向量;最后将特征向量输入ELM完成不同程度滑靴边缘磨损故障模式的识别。并与其它方法进行对比分析,结果表明,所提方法可以用较少的特征向量获得较高的模式识别效率。2)针对不同程度的早期微弱故障特征变化规律难以提取的问题,传统的信号处理方法难以满足需求,因此提出一种基于VMDF多尺度散布熵和ELM的柱塞泵早期故障诊断方法。在基于传统VMD基础之上,本文提出基于特征能量占比(Feature Energy Ratio,FER)的变分模态分解特征能量重构法(Variational Mode Decomposition Feature Energy Reconstruction,VMDF)实现信号重构;计算重构信号的多尺度散布熵(Multiscale Dispersion Entropy,MDE),选择峰值尺度散布熵作为特征向量;最后将提取的特征向量输入ELM完成不同程度滑靴端面磨损故障模式的识别。并与其它方法进行对比分析,结果表明,所提方法既可以反映故障程度变化规律,又能获得较高的模式识别效率。