论文部分内容阅读
本文针对目前陶瓷刀具断裂韧度和抗弯强度低的难题,利用氮化硅材料的自增韧补强机理和纳米材料增韧补强机理,成功地研制出了新型自增韧氮化硅基纳米复合陶瓷刀具材料,并对纳米复合粉体分散技术、刀具材料组分配比、烧结工艺、力学性能、微观结构、烧结机理、增韧补强机理、抗氧化机理和切削性能进行了系统深入的研究。新型自增韧氮化硅基纳米复合陶瓷刀具的研制成功为高性能陶瓷刀具的进一步开发与应用奠定了基础。 提出了新型自增韧氮化硅基纳米复合陶瓷粉体的均匀分散技术,制备出了无团聚体的Si3N4基纳米复合陶瓷粉体。根据α-Si3N4、纳米α-Si3N4W、纳米Ti(C7N3)和纳米TiN四种粉体的特性,以水作为分散介质,以PMAA-NH4作为分散剂,采用球磨、超声搅拌、调节悬浮液pH值和分散剂化学吸附等多种方法,优化出了四种单相粉体和复合粉体的最佳分散pH值和PMAA-NH4添加量,制备出均匀稳定地单相粉体和复合粉体悬浮液。 研制成功了纳米TiN复合氮化硅基陶瓷刀具材料GT1(Si3N4/TiN),其最佳烧结工艺条件为烧结温度1650℃、保温40min和压力30MPa,其抗弯强度、断裂韧度和维氏硬度分别为1079.8MPa、9.1MPa·m1/2和15.47GPa。结果表明,纳米TiN可提高GT1复合粉体的烧结活性,降低烧结温度,提高力学性能。均匀的Si3N4长柱状晶粒有利于提高材料抗弯强度和断裂韧度。GT1材料中存在大量的内晶型纳米TiN颗粒和少量的晶间型纳米TiN颗粒,内晶型结构主要为Ⅰ型(棱角形内晶TiN颗粒)和Ⅱ型(椭圆形内晶TiN颗粒)结构,且Ⅱ型内晶型第二相颗粒的周围存在烧结助剂形成的晶间第三相晕圈。刀具的主要增韧机理是晶粒桥联和裂纹偏转,纳米内晶型结构与基体晶粒的桥联自增韧机制存在协同效应。 研制成功了纳米TiN和纳米Si3N4W复合氮化硅基陶瓷刀具材料GGW20T5(Si3N4/Si3N4W/TiN),其最佳烧结工艺条件为烧结温度1650℃、保温40min和压力30MPa,其抗弯强度、断裂韧度和维氏硬度分别为978.68MPa、9.6MPa·m1/2和18.00GPa。结果表明,纳米α-Si3N4W可提高刀具材料致密度和力学性能。该材料内晶型结构主要是Ⅰ型。大量Al、Ce和Y元素富集于晶间相中,形成SiAlON固溶体,提高刀具的力学性能。刀具的主要增韧机理是裂纹偏转、晶粒桥联、裂纹扭转和扭结、裂纹弯曲及内晶型结构桥联增韧等。 研制成功了纳米Ti(C7N3)和纳米Si3N4W复合氮化硅基陶瓷刀具材料GGW20TC25(Si3N4/Si3N4W/Ti(C7N3)),其最佳烧结工艺条件为烧结温度1750℃、保温60min和压力30MPa,其抗弯强度、断裂韧度和维氏硬度分别为890.89MPa、9.51MPa·m1/2和18.08GPa。结果表明,该材料内晶型结构主要是Ⅰ型。刀具的主要增韧机理是裂纹偏转、晶粒桥联、裂纹弯曲及内晶型结构桥联增韧等。