【摘 要】
:
在电动汽车对长里程的迫切需求以及钴价上涨对成本的影响日益显著的市场背景下,具有高放电比容量、低成本、低毒性的高镍三元正极材料已经成为各大厂商的研究热点。随着LiNi0.8Co0.1Mn0.1O2(NCM811)材料的规模生产,如何将更高镍含量的三元材料产业化已经成为了迫在眉睫的问题。目前商业生产的正极材料几乎都是通过共沉淀-高温固相法两步得到的。本课题组在此领域深耕多年,有着十分丰富的经验,通过控
论文部分内容阅读
在电动汽车对长里程的迫切需求以及钴价上涨对成本的影响日益显著的市场背景下,具有高放电比容量、低成本、低毒性的高镍三元正极材料已经成为各大厂商的研究热点。随着LiNi0.8Co0.1Mn0.1O2(NCM811)材料的规模生产,如何将更高镍含量的三元材料产业化已经成为了迫在眉睫的问题。目前商业生产的正极材料几乎都是通过共沉淀-高温固相法两步得到的。本课题组在此领域深耕多年,有着十分丰富的经验,通过控制反应条件调控一次颗粒的排布和二次颗粒的形貌,成功公斤级合成过具有放射状排布的小颗粒NCM811前驱体,并烧结得到了具有优异比容量、倍率性能以及循环寿命的正极材料,具备挑战规模化合成优质LiNi0.83Co0.11Mn0.06O2(NCM83)前驱体,并烧结成高性能正极材料的基础。本论文应用了公斤级合成NCM811前驱体的反应条件,改进了溶液的进料温度,并在共沉淀反应过程中通过对前驱体的成核与生长过程施加不同的转速,成功规模化合成了小颗粒、窄粒径分布、高比表面积的NCM83前驱体。通过对高温固相烧结过程中烧结时间和混锂量的研究,成功获得了高容量、高倍率的NCM83材料。在3.0 V~4.3 V的放电区间,0.1 C(标称比容量为200m Ah g-1)下的首周放电比容量为216 m Ah g-1、1 C下的首周放电比容量为199m Ah g-1,在5 C的放电倍率下仍然有171 m Ah g-1的高可逆比容量。此外,还研究了前驱体与正极材料形貌和结构上的关联以及正极材料结构和形貌与电化学性能之间的构效关系,发现正极材料继承了前驱体的一次颗粒排布,具有较大的比表面积、较小的粒径和较短的一次颗粒长度,并且其二次颗粒中心有着大小不一的空洞。前驱体的粒径越小、烧结过程中锂离子的热力学吸附路径越短,体现在正极材料晶体结构中具有更小的离子混排程度。较大的比表面积和较小的粒径意味着提供了更多的Li+交换位点并且缩短了充放电过程中锂离子的脱/嵌路径,提升了材料的放电比容量和倍率性能。此外,正极材料粒径与晶粒尺寸成正比,晶粒越小,则晶格能就越小,充放电循环过程中电池材料的结构稳定性会稍差,容量保持率会较低。合成的正极材料的循环保持率仍有提升的空间,并且材料表面残留的Li2CO3在循环过程中会释放气体,不仅影响材料电化学性能的发挥,还会成为引发安全问题的隐患。使用BF3-丙醇为溶质、碳酸二甲酯为溶剂,配制成的BMC溶液对正极材料进行洗涤处理有效的去除了残留的Li2CO3并在表面形成一层约6.5 nm厚的包覆层,在不影响材料晶体结构的情况下使循环保持率由74.84%提升至81.96%。改性后的正极材料在1 C下的放电比容量和循环保持率超越了商业材料。
其他文献
柴油中硫化物(如苯并噻吩、二苯并噻吩等)会影响油的品质,造成发动机的腐蚀,其燃烧后生成的硫氧化物会破坏环境,影响人们的身体健康,因此对柴油中的硫化物的含量进行检测已经成为亟待解决的重要问题。目前常用的硫化物含量检测技术无法实现对硫含量快速便携的检测,而传感器技术具有操作简便、无损分析、方便快捷等优点,可以实现对硫化物含量实时快速的检测。本文主要围绕车载硫传感器前端检测和后端检测两个应用方面——检测
近年来,全国正在逐渐形成“大众创业,万众创新”的新势态,选址作为创业者开展业务的第一步,不仅对企业发展具有深远影响,也关系到创业政策的制定。创业选址属于区位理论的研究范围,遵从经济学、地理学中的企业选址一般规律,同时也取决于创业者的个人偏好。作为家乡认同浓厚且出现大规模流动人口的转型中国家,中国的创业者在区位选择时必然对家乡地有别样的情感态度。同时,创业者的选址偏好也影响其创办企业的规模与业绩,关
环氧树脂是一种常用的高分子材料,因为其具有优异的力学性能、耐溶剂性、电阻性能等,广泛应用于航天航空、汽车制造、电子设备等领域。但是,环氧树脂也有明显缺点,环氧树脂显脆性、韧性不足,因此增韧环氧树脂成为一个重要的任务。本文通过三步反应合成一种含有醚键、柔性链段的含磷端环氧基低聚酯,对环氧树脂进行改性处理,研究改性剂的加入对环氧树脂韧性的改善效果,以及对其他性能的影响。合成了含磷元素的中间体,探究了实
全球化背景下,各国教育的联系与互动不断加强,国际组织、跨国公司、非政府组织、公民社会等各类公共或私人的非国家行为体成为了教育治理的重要主体,并在地方、国家、区域、全球等多层面和范围内进行了复杂的互动,对主权国家的教育政策制定和实践产生了越来越不容忽视的影响。这使得教育已不再是单纯的国内事务,全球教育治理格局已然形成。近年来,OECD在教育领域不断扩张,以“软治理”的方式,对全球的教育系统进行诊断和
钴(Co)在LiCoO2、LiNi1-x-yCoxMnyO2和LiNi1-x-yCoxAlyO2等正极材料中发挥着重要的作用。然而,Co在世界上的储量极低且分布不均,导致含钴三元正极材料的成本不断增加。且减少钴含量的同时增加镍含量可以提升正极材料的能量密度。因此,低钴/无钴正极材料成为当前的研究热点。无钴正极材料的研究主要集中在多晶材料上,而多晶材料在长期循环过程中会产生晶间裂纹,从而加剧电极/电
21世纪,随着PISA、TIMSS等国际测试的排名效应加剧,英美为主的国家愈加重视基础教育教学质量,并且,随着区域层面系统性教学变革的兴起,区域教学质量保障备受关注,对区域教学质量保障人员专业能力建构的深入研究具有重要的实际意义。本研究采取文献研究、比较研究、案例研究的研究方法,以分布式领导力为理论视角,以英国、美国教学质量保障人员专业标准和框架为分析对象,分别从学科建设、教师发展、区域统筹三个方
光催化反应被认为是解决目前能源危机一种有效的途径,而半导体光催化技术的重点是开发出具有优良光催化活性和可重复使用性的光催化剂。近年来,g-C3N4这种无毒无金属的光催化剂因其独特的电子结构、优良的化学稳定性和丰富的资源储备而引发了全世界的广泛关注。但是,相邻CN层之间的弱范德华力导致光生电子和空穴的快速复合等因素会对它的光催化活性产生负面影响。所以为了提高g-C3N4的应用潜力,本文做了如下探究:
随着便携式电子设备和电动汽车的快速发展,锂离子电池的能量密度越来越受到人们所重视。与传统的石墨负极相比,硅基负极具有超高的质量比容量(3579~4200 m Ah g-1)以及与石墨相近的脱/嵌锂电位,可以极大提升锂离子电池的能量密度。但是,硅基材料在充放电过程中严重的体积变化造成材料破碎、粉化,失去电接触以及生成不稳定的固态电解质膜等一系列问题,导致电池容量快速衰减。将碳材料与硅复合可以有效改善
目前商业化的锂离子电池含有液态有机电解液,存在爆炸、起火等安全隐患,且液态电解液较窄的电化学窗口不易与高压正极配合使用,进一步限制了电池能量密度的提升。选择固态电解质代替液态有机电解液不仅可以解决安全问题,还促使金属锂负极和高压正极的同时应用成为了可能,能够满足动力与储能领域对能量密度的需求。因此,发展固态电解质已经成为了目前的研究热点之一。无机固态电解质虽然室温下电导率大,但是与电极接触时刚性大
近年来新能源汽车的发展使快充技术的重要性日益突显,而传统石墨负极在超大倍率下难以提供可观的容量,且性能衰减严重,因此亟需开发具备快速充放能力的锂离子电池负极材料。无序岩盐(Disordered Rock Salt,DRS)结构Li3V2O5负极材料因其特有的三维0-TM(Transitional Metal)锂离子跃迁方式具有很高的扩散系数以及一定的赝电容特性,在超大倍率下依然能够保持较高的可逆比