【摘 要】
:
表面介质阻挡放电等离子体流动控制技术是一种新型流动控制技术,在航空航天领域有着广泛的应用前景。研究表面介质阻挡放电的放电机理,对其在航空航天领域的应用与推动均有重要意义。本文仿真研究了纳秒脉冲激励下的表面介质阻挡放电微观发展过程,研究了放电起始时刻、起始位置,对表面电荷分布等微观物理量演化规律背后的物理机制进行了分析与讨论;仿真研究了不同电压幅值、结构参数下的放电微观发展过程,讨论了上述参数对表面
论文部分内容阅读
表面介质阻挡放电等离子体流动控制技术是一种新型流动控制技术,在航空航天领域有着广泛的应用前景。研究表面介质阻挡放电的放电机理,对其在航空航天领域的应用与推动均有重要意义。本文仿真研究了纳秒脉冲激励下的表面介质阻挡放电微观发展过程,研究了放电起始时刻、起始位置,对表面电荷分布等微观物理量演化规律背后的物理机制进行了分析与讨论;仿真研究了不同电压幅值、结构参数下的放电微观发展过程,讨论了上述参数对表面电荷分布等微观物理量演化规律的影响,结果表明:在正极性脉冲激励下,放电通道从高压电极边缘激发,激发的放电通道与高压电极组合成类似锯齿电极结构,使高压电极表面局部场强出现两侧几乎为0,中间取极大值的突起现象;放电起始位置由于受到参与气体电离过程的电子数密度约束,使放电通道并非严格起始于电场最强的高压电极边缘的下顶点,而激发于电场稍弱、电子数密度更高的电极边缘上侧,具体位置受电场分布的影响;由于正离子在介质表面积累并形成表面电荷,使附近电场减弱,气体电离产生的带电粒子减少从而导致电流下降;在脉冲电压的下降沿,空间的残余电荷所在区域形成“虚拟阳极”,与高压电极之间形成反向电场,产生负向通道并形成负向电流。脉冲电压幅值增大时,外电场增强使气体电离过程愈加剧烈,放电通道的形成时间缩短使放电提前;由于气体电离产生更多正离子在介质表面积累,使表面电荷密度增大。电极间距增大时,外电场减弱使放电延迟;由于电场线沿水平方向被拉伸,放电起始位置受到参与电离过程的电子数密度约束减弱,使放电起始位置下移;由于通道到达地电极外边缘时向介质表面靠拢,故放电通道覆盖长度有所增加。地电极宽度增大时,放电通道覆盖长度增大导致大于30 k V/cm的强电场区分布范围更广,气体电离产生更多带电粒子进入高压电极,使电流幅值增大。相较于条状电极结构,环状电极结构下的外电场被削弱使放电延迟,放电起始位置有所上移;放电通道沿介质方向的覆盖速率更快;靠近高压电极的表面电荷密度增大。地电极环内半径增大时外电场增强,放电通道的形成时间缩短使放电提前;放电区域覆盖长度随着地电极环内半径增大而减小,放电通道覆盖面积近似线性增大。
其他文献
环氧树脂(EP)、聚丙烯、聚乙烯等聚合物材料作为电气装备与电子器件的核心绝缘材料,广泛应用于电气、电子、军工、航空等领域。然而,在长期服役过程中,其不可避免地承受机械应力、强电场、极端湿度、温度以及化学腐蚀的作用,导致局部裂纹、电树枝和水树枝损伤,引起绝缘材料的电气和机械性能大幅下降,甚至诱发电子设备和电气设备提前失效。自修复技术是实现损伤抑制和修复的有效途径,但受制于修复范围有限、修复效率低下和
细胞自噬是细胞本身代谢需求和某些细胞器更新的重要生理过程。细胞自噬与神经退行性疾病、肿瘤等病理过程有着密切联系。生物体在生理和病理过程中自噬都有重要作用,现已成为生物医学领域的一个研究热点。脉冲功率技术在生物医学应用中可以诱导不同的生物电效应。有研究表明脉冲电场可以诱导自噬来调控致病相关蛋白,有望为该疾病的靶向治疗提供一种新的思路。高场强、窄脉宽的脉冲电场具有更高频的频率分量,可以作用到细胞内部结
供用电网络中直流微电网在新能源分布式储能、直流供电系统及直流用电负荷的占比越来越大,同时由于新能源的入网消纳而得到快速发展。也带来了新的问题:直流侧的不平衡负荷以及交流侧的三相不对称问题将分别引入不平衡潮流和二次纹波电流的问题。会增大线路损耗、降低设备寿命、甚至造成微网设备的工作异常,对直流微电网及设备的安全可靠运行造成严重威胁。论文以直流微电网的不平衡潮流及二次纹波电流的问题为研究点,开展了如下
在物联网技术的推动下,可穿戴设备受到广泛青睐并成为学术界和产业界的研究热点。伴随着可穿戴设备的蓬勃发展,柔性电子技术应运而生。自富勒烯、碳纳米管、石墨烯相继问世以来,碳基材料的众多优良属性引起了研究人员的普遍关注,也为柔性器件的发展带来了新的机遇。本论文以碳基材料为核心,围绕其压阻效应、焦耳效应、热声效应,从压力传感器、热声执行器和多功能集成化器件三个方面开展了创新性研究,获得了一系列新型碳基柔性
铝/钛复合结构综合了两种材料的性能优势,在航空航天等领域应用广泛,但铝合金与钛合金物理化学性能差异大,采用传统连接工艺易使接头产生缺陷。磁脉冲焊接作为一种新型固态焊接技术,通过高速碰撞实现冶金结合,适用于焊接异种轻金属材料,同时兼具绿色环保、生产效率高和可控性好等优点,但磁脉冲焊接系统能量利用率低,限制了该技术在工业中的应用。论文以AA1060/TC4板件磁脉冲焊接为研究对象,通过数值模拟和实验研
目的:了解宁夏地区临床护士疼痛管理现状。方法:于2022年3月—4月选取宁夏回族自治区一级乙等及以上医院的3 613名临床护士作为研究对象,采用自行设计的宁夏地区疼痛护理实践现状调查问卷进行调查。结果:大部分护士认为进行疼痛程度评估(92.7%)、对疼痛病人采取镇痛措施(95.1%)、对病人进行疼痛相关知识教育(95.9%)、争取家属支持以缓解病人疼痛(95.5%)、对病人的疼痛状况进行记录(94
等离子体射流中包含多种活性物质,在生物医疗、材料处理、食物灭菌等多个领域都有广泛的应用。驱动电源的电参数(电压、频率、占空比)会直接影响射流的形貌以及活性物质的密度。大部分k Hz输出频率范围内的研究工作受限于电源性能,只探究了单一驱动参数变化对射流特性的影响,并没有在功率固定的条件下对多种驱动参数变化对射流特性造成的影响进行深入的研究和讨论。基于此,本文自主设计了一台能够在大幅改变输出电压、频率
输电线路覆冰是影响电网安全运行的重要问题之一,现有监测手段主要是以力学检测为主,图像检测为辅,在一定程度上实现了对输电线路覆冰有效监测,但是覆冰往往伴随着大风天气,输电线路拉力传感器测到的往往是导线冰风耦合荷载,因此想要准确测量导线冰荷载就必须消除风荷载的影响。本文以现有悬索力学理论为基础,考虑了动态瞬时风荷载、冰荷载以及温度变化的影响,构建覆冰导线动态张力计算模型,通过仿真分析瞬时风荷载对覆冰导
随着节能环保以及“碳中和”理念的不断深入人心,超特高压电网线路以及户内变电站在减小输配电过程中的电能损耗和提高资源利用率方面,发挥着越来越重要的作用。这些年来,变电站和超特高压输电线路的建设对周围环境和人类健康造成的直接损害颇受社会各界的关注。为了可以深入研究这些突出的电磁环境问题,本文重点建模并计算了三种当前公众普遍尤为关心的重要电磁环境,即500k V超高压交流输电线下和户内变电站中的工频电场
视觉跟踪在工业界和日常生活中有广泛的应用前景,因此受到了学界重视。由于在实际应用中,视觉跟踪会受到很多干扰因素影响,为此需要设计稳定性和鲁棒性更强的算法来应对复杂的跟踪环境。本文基于粒子滤波和相关滤波算法做了以下研究:(1)针对粒子滤波重采样的粒子贫乏问题,引入一种基于遗传算法思想的优化方法,并在该方法的基础上设计了一种在发生遮挡时扩大粒子分布以增大搜索空间,遮挡结束并重检测成功后又将粒子集聚拢于