波导器件电磁热多物理场耦合分析方法研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:hanxu0214
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技的发展和实际工程需求,微波器件逐渐小型化,集成化,尺寸已经达到了纳米级,而器件越小,其对于温度的敏感度就越高,因此电磁热效应对于此类微波器件的性能影响就越为显著。随着微波电路日益复杂,传统的计算电磁学数值算法的求解效率和精度已经不能满足实际需求,因此一种高效高精度的分析方法的研究显得尤为必要。本文提出一种以有限元算法(Finite Element Method,FEM)为基础,结合区域分解法(Domain Decomposition Method,DDM)、多波前法(Multifrontal Algorithm,MA)和自适应交叉近似算法(Adaptive Cross Approximation,ACA),实现一种对于复杂模型精确高效分析的方法,本文将按如下几方面展开介绍:首先,介绍FEM求解电磁场问题的基本过程,包括通过麦克斯韦方程组推导出电场控制方程、通过基函数选择和变分原理将电场控制方程转化成有限元线性方程组的过程以及常用的边界条件,同时介绍电磁热效应理论基础。其次,介绍一种基于多波前的压缩型有限元区域分解法求解电场的方法,过程为在DDM中将模型分为有限个无重叠的子域,对每个子域用FEM建立起有限元系统矩阵,通过引入相邻子域的传输条件和拉格朗日乘子,建立起DDM系统矩阵,通过ACA对相关矩阵进行压缩,通过MA对每个子域的FEM有限元系统矩阵求解得到子域场分布,最终得到全域电磁场分布。同时在求解中通过控制LU分解精度来提高求解效率。最后,对于瞬态和稳态热场分布进行分析,过程包括通过对模型分区,以介质的介电损耗作为热源建立热学DDM系统矩阵,引入热学拉格朗日乘子,并通过MA求解出子域热场分布,可以得到全域稳态热场分布,通过时间微分方程和差分方程的转换,频域时域转换后求解子域内热场的动态变化,用以对模型瞬态温度变化进行分析。
其他文献
在车载自组织网络(Vehicular Ad-Hoc Network,VANET)中,连通性是网络存在的前提条件,也是网络数据传输的基础,能够保证消息的单播或广播传输,而车辆的移动性会直接影响到车载自组织网络的连通性,形成不同的网络拓扑结构,进而影响对传输时延、丢包率等网络性能指标的测量和评估。此外,在车辆密度较高的区域,当车辆同时发送消息时,共享无线信道极易造成拥塞,因此实现消息有序传输并确保安全
数模转换器(DAC)在雷达、电子战争、有线或无线通信等很多领域都发挥着极其重要的作用。在通信领域中,它作为发射机系统的关键一环更是严重制约着整个系统性能的提升。为了紧跟数字信号处理系统的发展脚步,高速高精度DAC的研究与设计俨然成为了一个重要的发展潮流。众所周知,二进制码DAC结构简单、速度较快,但线性度较差,而温度计码DAC线性度较好,但结构复杂、转换速度慢。为了同时满足高速和高精度的要求,通常
微弱信号的测量在生物医学、航空航天、海洋探测、半导体测量等领域的应用非常广泛。在这些领域中,待测源很可能为高阻抗,因此待测源的电压信号十分微弱,为了减小检测难度,在检测信号前,需要对微弱信号进行放大。但是电路中的噪声以及失调往往直接影响待测的微弱信号质量,必须采取措施抑制甚至消除电路中的噪声以及失调,即微弱信号放大器在具备放大增益的同时必须具备低噪声的特点。由于微弱信号放大电路性能的好坏在一定程度
超连续谱是光脉冲在非线性介质传输过程中产生的一种光学现象,具有光谱宽、稳定性和相干性好等特点,因此在诸多领域具有广泛应用。但目前报道的超连续谱大多是不能调谐或无法精确控制调谐范围,所以本文提出了一种产生可调谐超连续谱的方法,以高非线性三硒化二砷(As2Se3)作为纤芯、以温敏材料甲苯填充包层的悬吊芯微结构光纤,在甲苯临界温度-90~110℃范围内产生温控可调谐超连续谱,在物质探测、光谱学和环境分析
与卫星通信和地面蜂窝通信相比,无人机(Unmanned Aerial Vehicle,UAV)通信具有易于部署控制,组网方式灵活,成本适中等优点,在未来移动通信领域,尤其是第六代(Sixth Generation,6G)移动通信系统中显示出了广阔的应用前景。论文主要针对无人机中继通信系统,提出了无线传输策略方案,并进一步对系统的性能进行分析,为未来无人机通信系统的设计提供理论依据和设计方案。论文的
半导体激光器凭借着其体积小,集成度高,调制特性好,使用寿命长等特点成为了现代光通信网络以及光子集成电路中重要的元器件。由于光纤传输具有大带宽与低损耗的特点,利用双波长激光器拍频产生微波信号具有很高的应用前景,成为了研究的热点。此外,利用双波长半导体激光器制作的激光雷达系统可以用于高精度的测速测距。这些因素使得双波长半导体激光器拥有很高的应用价值。对于双波长半导体而言,降低其制作难度,生产成本,提高
量子信息科学发展至今已经完美的将量子力学原理融入进信息科学中,通过量子的方式可以解决经典的方式所不能达到的效果。光子作为一种传输速度最快、与环境耦合性最弱的一种粒子,常常被用来当做量子态的载体。通过量子态编码传输信息,是量子通信任务中常常用的手段,本文主要讨论了几种常见的量子通信任务。本文首先简介了量子信息的相关背景和研究意义,交代了量子通信任务涉及的一些基本概念。第二章主要介绍光量子通信任务涉及
随着物联网(Internet of Things,IoT)的飞速发展,海量的机器类通信设备(Machine-Type Communications Device,MTCD)开始出现在通信网络中。MTCD数量的指数级增长以及独特的通信特点给传统的蜂窝网络架构和资源管理方法带来了很多挑战,包括网络拥塞、频谱资源不足和MTCD自身资源受限等。针对这些挑战,本文对机器类通信场景下的资源管理方面进行了研究,
二十一世纪是信息时代,人们对信息技术的需求也与日俱增。高速和大容量信息传送需求使得光电片上集成成为信息领域值得期待的发展前景。光源集成在芯片上需要解决的问题包含诸多方面,包括器件的大小、器件与器件之间的耦合效率、器件产生的信号特性等。本论文针对以上问题做出相关的研究,具有重大的实际意义。另外,GaN是第三代半导体材料,它有3.4e V的禁带宽度,属于宽禁带直接带隙半导体材料,具有产生蓝紫光的独特优
在通信领域内,由于半导体激光器体积小,重量轻,可靠性好等优点已经成为光纤通信中的核心器件之一。许多性能优良的半导体激光器在光通信、照明、光电传感及光存储等领域应用广泛。尤其是氮化镓(GaN)基半导体激光器,由于GaN具有很多硅材料不具备的优异性能,具有高效率、高亮度、高稳定性等诸多优点,是高频、高压、高温和大功率应用的优良半导体材料,所以由GaN基材料制备的半导体激光器广泛地应用在各个领域。本论文