【摘 要】
:
随着经济和社会的快速发展,国内汽车保有量不断增多,给生态环境保护带来了巨大挑战。出于对环境和能源安全的考虑,越来越多的城市开始构建电动汽车充电站网络。电动汽车依赖于公共充电站提供电量,因此能够准确地预测新城市中充电站的充电需求十分重要,有助于运营策略的制定和新站点的部署工作。由于预测新城市的充电站需求存在冷启动问题,本文使用迁移学习将充电需求知识从具有丰富充电数据的城市迁移到新城市。跨城市充电站需
论文部分内容阅读
随着经济和社会的快速发展,国内汽车保有量不断增多,给生态环境保护带来了巨大挑战。出于对环境和能源安全的考虑,越来越多的城市开始构建电动汽车充电站网络。电动汽车依赖于公共充电站提供电量,因此能够准确地预测新城市中充电站的充电需求十分重要,有助于运营策略的制定和新站点的部署工作。由于预测新城市的充电站需求存在冷启动问题,本文使用迁移学习将充电需求知识从具有丰富充电数据的城市迁移到新城市。跨城市充电站需求预测存在两个核心问题:如何利用多源数据提取有效特征、如何应对跨城市多源数据存在的领域偏移。本文首先对多源数据和充电需求进行了特征关联性分析,设计了外部因素特征提取模块和充电站配置特征提取模块,来建模多源数据对充电需求的影响,并通过空间注意力机制提取特征图中关键的上下文信息。其次,跨城市多源数据之间存在的领域偏移问题是由于两个城市的特征数据分布不同导致的。因此,本文设计了一个领域区分模块来学习两个城市的充电需求模式中深层不变的特征。此外,本文设计了充电需求预测模块来对充电需求和充电需求热度排名进行预测。最后,本文实现了一个基于注意力机制的卷积领域适应性网络,并建立了三组跨城市的充电需求数据集,对提出算法和其他对比方法进行了充分的实验对比,验证了本文算法的有效性。
其他文献
建立完善的动力电池回收利用体系是我国新能源汽车高质量发展需要突破的瓶颈问题之一,研究和发展智能化、柔性化、精细化的高效拆解技术是其中的重要环节.但由于受非结构化的拆解环境和拆解过程中的不确定性等因素的影响,目前,动力电池拆解还采用人工为主、机器辅助拆解的方式,不仅低效,而且致使工作人员暴露在危险的工作环境中,亟需向自动化、智能化方式转变.研究基于神经符号理论对动态环境中动力电池的拆解任务进行研究,设计并实现了一套任务和运动规划系统.与现有的动力电池拆解系统相比,系统在自主性、可扩展性、可解释性、可学习性4
人脸属性识别是计算机视觉和模式识别领域的热门研究课题之一,对人脸图像的分析和理解具有重要的研究意义,同时在图像检索、人脸识别、微表情识别和推荐系统等诸多领域具有广泛的实际应用价值.随着深度学习的快速发展,目前国内外学者已提出许多基于深度学习的人脸属性识别(deep learning based facial attribute recognition,DFAR)方法.首先,阐述人脸属性识别方法的总体流程.接着,按照不同的模型构建方式,分别对基于部分的与基于整体的DFAR方法进行详细地概述与讨论.具体地,对
作为计算机视觉中的热门方向之一,科研人员们在文字识别领域上已经取得了众多显著的成果,并将其广泛运用到真实场景中方便我们的日常生活。目前,虽然传统的OCR技术对于文档文本的识别已经十分成熟,但在自然场景下,由于背景复杂、文字多样,图片文本识别仍然是一项具有挑战性的任务,需要不断地探索和改进。因此,本课题将以场景文本识别作为主要研究内容,针对现存的两大难点提出改进方法。在应用上,本课题则以菜单作为落地