判别性在线孪生跟踪网络研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:mfl110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来目标跟踪因其在安防、无人机、自动驾驶、人脸识别等领域的普遍使用性得到迅速发展,涌现出许多颇具创造性的算法。孪生网络系列算法因其兼顾速度和精度成为现今最流行的算法之一,但基于孪生网络的跟踪算法由于其相似匹配以及未能充分利用上下文信息,不能很好的应对相似物干扰、遮挡等挑战。为解决上述问题,我们将强化学习引入目标跟踪,将目标跟踪视为在线决策过程。本文所做工作如下:(1)针对孪生网络未能充分利用背景信息、相似匹配性所带来的易受相似物干扰的难题,本文提出了一种融合孪生网络和强化学习决策网络的两阶段目标跟踪算法。利用孪生网络相似匹配性获取搜索区域中目标得分相应图,得到目标大致区域。采取目标潜在位置图片作为候选者送入强化学习决策网络获取目标精确位置。(2)针对传统强化学习算法在线更新缺乏鲁棒性,导致在线更新陷入越更新越差这一难题,我们使用元学习算法MAML训练一个特征选择器,并设置一个特征池,使用训练的特征选择器对跟踪结果是否加入特征池进行判决,后续使用过滤后的特征池信息对网络进行在线更新,提升在线更新质量。(3)针对传统的基于Actor-Critic系列的跟踪算法由于其算法易陷入局部最优导致目标跟踪精度较差的原因,我们使用改进版本的柔性动作评价算法(SAC,Soft Actor Critic)对跟踪网络进行训练,并使用Res Net替换原有的特征提取网络。该算法引入最大熵概念,增加优质动作出现的概率,增强跟踪算法的准确性。
其他文献
当前,全球各国均面临化石能源趋于耗尽和生态环境逐渐恶化的双重问题,严重制约了人类社会的可持续发展。尤其对于世界上能源消耗大国的中国而言,受制于资源禀赋、消费习惯和技术依赖等因素,煤炭、石油、天然气等化石能源在一次能源消费结构中长期占主导作用。电能作为一种清洁且高效的能源,很多国家都广泛采用电能,各个国家也都纷纷指出促进经济可持续发展的就必须提升能源利用率,加快发展电力系统。因此为满足经济性与环保性
学位
随着配电物联网泛在感知技术的提速发展,海量安全监测数据呈现出多源异构的特点,通过对多源异构安全监测数据进行聚合分析,可以获取安全监测数据的类别信息,有助于配电物联网安全态势的感知与处理。然而,如何对海量的多源异构安全监测数据进行有效的聚合分析并从中提取有用的信息,仍然是当前所面临的难题。本文聚焦于配电物联网多源异构安全监测数据的聚合模型与算法,基于对抗性领域自适应网络设计了一种对抗式的多源异构数据
学位
动作捕捉技术在医疗、人机交互、影视等领域应用需求越来越广泛,基于惯性传感器的人体动作捕捉系统成为研究热点,但因人体的非标准几何体性,无法使得IMU真正沿着确定的肢体方向佩戴,因此对准技术成为关键技术之一。本文基于IMU展开对人体动作捕捉的研究,设计了一种基于多节点IMU的实时可视化的作捕捉系统,为适合不同人群提出了两种初始对准方案。论文主体分为三个部分:节点IMU数据处理、基于多节点IMU的人体动
学位
近年来,光伏发电凭借其无污染,无枯竭的优点开始受到国内外的广泛关注。其中非隔离型光伏逆变器因不含变压器结构,具有体积小、重量轻和效率高的优点,但是,无隔离变压器的逆变系统缺少电气隔离,就存在着大量的漏电流,漏电流过高会存在电磁干扰问题,影响系统的性能。因此,如何抑制非隔离型光伏逆变器的漏电流就成为了当前研究的一个热点问题。针对这一问题,本文首先提出了一种用于漏电流抑制的改进型H7逆变器拓扑来抑制无
学位
关联规则挖掘是一种热门的数据挖掘技术。依据给定评判值(支持度、置信度等)的约束,它以“变量1,变量2,......,=>变量n”的规则形式,展示数据中多个变量之间的关联关系。值得注意的是,关联规则挖掘技术适用于离散型数据,而过程工业数据是连续的,故需对其进行离散化操作。实验表明,连续数据离散化后具有稀疏特性。面对稀疏数据,传统关联规则挖掘算法受自身瓶颈限制,性能有所下降。此外,随着工业存储技术的发
学位
移动通信发展至今,为实现更高的传输速率,衍生了许多调制方式,调制过程不仅对信号的相位进行调制,还对幅值进行了调制。所以射频信号的包络线不再恒定。传统的射频功放供电方式,效率极其低下。目前有学者提出的包络线跟踪(Envelope Tracking,ET)技术能够有效地提升效率。ET电源是ET技术的核心装置,它的效率和跟踪带宽影响了射频功放的效率。本文对64QAM调制下的射频包络线进行了跟踪,根据其特
学位
随着医学影像技术不断发展,各种模态的医学图像广泛地应用于临床疾病诊断、辅助手术以及健康检测等领域。由于成像技术的局限性,采集的医学图像往往存在模态单一、图像分辨率不高等问题,不利于后续医学图像的临床应用。医学图像增强技术能有效改善图像质量,包括医学图像融合、医学图像超分辨率等。基于卷积神经网络的医学图像增强是当前研究热点,并取得了巨大的性能提升。大部分卷积神经网络的增强结果在含参考图像的数据集中进
学位
点云是3D计算机视觉的数据表现形式,目前在计算机视觉领域,点云的分类技术是一个非常前沿的研究。现有的基于深度学习的点云分类方法由于对高频信息的忽视以及对局部特征关注度低,所以点云目标的特征学习不是非常有效,使得分类的精确度低和系统鲁棒性较差。本文采用公共数据集作为实验数据,研究了点云分类问题,并提出了两种分类方法。其一,研究基于随机傅里叶特征映射的点云目标分类问题。端到端的点云分类模型是根据目标的
学位
人脸超分辨率是一个特定领域的图像超分辨率问题,其目的是为了将输入的低分辨率人脸图像恢复为高分辨率人脸图像,在视频监控和识别系统等安全场景中都有重要的应用价值。与一般的图像超分任务不同,人脸超分辨率需要关注人脸的面部细节信息,便于后续人脸检测和人脸识别等相关任务性能的提升。本文开展基于深度特征表示学习的人脸超分辨率研究,旨在提高人脸图像的重建效果。结合近期研究的优点,发现以前研究中的不足,提出改进的
学位
随着第五代移动通信系统在全球范围内部署,学术界和工业界已经开始将注意力转移到第六代移动通信系统,以满足2030年对信息和通信技术的需求,其中,去蜂窝大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)被认为是一种极具前景的物理层技术。与现有的蜂窝移动通信网络相比,在去蜂窝大规模MIMO系统中没有“小区边界”的概念,大量随机分布的接入点(Access Poin
学位