论文部分内容阅读
化学驱及复合化学驱提高采收率的机理研究涉及到驱油体系的体相流变性、界面张力和界面流变性等方面。大量的研究结果表明,界面流变性直接影响到驱替的过程和最终的驱替效果。在提高采收率技术领域,界面流变性研究主要包括以下四个方面的研究课题:一是界面粘度的有效测试方法和手段;二是在可靠测试手段下对化学驱及复合化学驱过程中的油水界面流变性进行系统研究;三是就化学驱及复合化学驱过程中界面流变性对驱油的微观过程和宏观结果的影响进行研究;四是如何在驱油剂的研制、开发和驱油体系研究过程中使驱油体系的界面流变性达到最佳状态。本论文围绕第一、二两个方面开展了大量的、深入细致的研究工作。 界面粘度是反映界面层中物质组成和存在状态的物理量,是表征和反映界面流变性的基础参数之一。因此,可靠、准确和方便地测试界面粘度具有重要意义。通过对界面粘度的系统研究,可以提高我们对油水体系中界面液膜的形成机理、结构特征和驱油性能的认识,有助于拓展驱油过程中各种物化现象的描述手段、更好地理解微观驱油机理、促进驱油剂的研制与开发、发展更多更有用的EOR/IOR方法,同时也将促进胶体科学和界面科学技术领域的进步。 迄今为止,不少的学者已围绕界面粘度的表征方法和测试手段进行了大量的开创性研究工作,也取得了一些有意义的、可以借鉴的成果。在众多的界面粘度测定方法中,沟槽式粘性牵曳界面粘度计因其理论基础可靠、结构相对简单而被大多数研究者接受和采用,并在二十世纪八十年代以后获得广泛承认,成为了测量界面剪切粘度的最主要方法。然而,它的测定方法的固有缺陷决定了它不能用于测定粘稠性流体间的界面粘度,因而也就不能应用于化学驱及复合化学驱界面流变性的研究中。鉴于此,本文对沟槽式粘性牵曳界面粘度计的仪器结构及测定原理进行了系统分析,并在此基础上改进和完善了它的测定方法,解决了体相粘度较高的流体表面粘度和界面粘度测定问题,使聚合物和复合化学驱油体系与油之间的界面粘度测定的测定成为现实。通过对测量结果的误差分析发现,下相液体深度的测量精度是界面粘度测量!给论——的关键,为此改进了液体深度测量方法,设计并加工了液体深度测量器,大大提高了深度测量精度。 针对新型疏水缔合聚合物(NAns)和十H烷基苯磺酸钠(SDBS),研究了单纯的聚合物溶液、单纯的表面活性剂溶液和聚表二元复合驱油体系的表面粘度以及各体系与模拟油之间的界面粘度。研究结果表明,体相粘度直接影响界面粘度,对于增粘型流体,提出了用无因次界面粘度来描述界面流变性的方法,它排除了溶液体相粘度的干扰,是直接反映溶质在界面上的吸附和集特性的参数,对研究界面层的组成、结构及平衡状态具有重要意义。 NAPS溶液与模拟油相之间的界面粘度和无因次界面粘度同时受温度、聚合物浓度和溶液矿化度影响。聚合物浓度对无因次界面粘度的影响因溶液矿化度不同而有所差异。 聚合物分子结构不同,其界面流变性有明显差异。NMs与模拟油之间的界面粘度明显高于HPAM与模拟油之间的界面粘度。 表面活性剂SDBS在溶液表面聚集,在降低表面张力的同时,将增加表面粘度,浓度在CMC附近,表面粘度达到最大。在表面活性剂溶液/模拟油体系中,当加入的SDBS分子的浓度较低时,SDBS分子将首先在油水界面上吸附,使界面张力和界面粘度同时降低;当SDBS浓度增加到一定程度后,SDBS的进一步增加将促使界面膜形成,降低界面活性,使界面张力回升,界面粘度增加。SDBS与NAPS之间存在明显的相互作用,在一定的表面活性剂浓度范围内,它们之间会出现有利的协同效应。 聚表之间相互作用对界面流变性产生明显影响,且影响程度和作用机理与NAPs浓度有关。在表面活性剂的CMC附近和NAPs的CAC附近,聚表二元体系中表面活性剂分子在表/界面上的聚集与作用机理不同,从而使聚表二元体系的物化性质与表面活性剂浓度的变化关系变得复杂化。 均匀设计实验方法适用于多因素、多水平的实验设计,实验次数等于因素的水平数,是大幅度减少试验次数的一种较好的试验设计方法。实验结果表明,将均匀设计实验方法用在聚表二元驱油体系的界面流变性研究中具有明显的优势,大大减少了实验工作量。该方法适合于用在化学驱及复合化学驱提高采收率技术中普遍存在的多因素、多水平及因素之间存在相互作用的实 且且 MQ验研究中。 将逐步回归分析方法用于实验数据处理,结合专业知识,可以将均匀设计方法安排的实验结果作多元非线性回归,帮助分析出影响界面流变性的主要因素、各因素之间是否存在相互作用,以及相互作用的强弱,为复合化学驱提高采收率机理和驱油体系性能研究提供指导。