论文部分内容阅读
本论文的工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要工艺创新与基础研究”(项目编号:2003CB314900);教育部科学技术重大研究项目“基于微结构光纤的新一代光通信器件及系统”(项目编号:104046),国家高技术研究发展计划(863计划)项目“单结构与多结构集成式光子晶体光纤及器件”(项目编号:2003AA311010)以及北京市教委共建项目(项目编号:XK100130437)。光纤在通信系统、传感、医疗器械和各种光学器件等众多领域中具有重要和广泛的应用。在过去的几年里,为了提高光纤在各种应用中的性能,人们积极研制新型的光纤。光子晶体光纤(Photonic Crystal Fiber,简称PCF)的研制成功,是光纤技术领域最新的进展之一,其研究受到了全世界众多研究人员极大的关注。PCF在中心处引入了缺陷作为芯区,而周围排列着许多沿光纤长度方向延伸的空气孔,通过改变空气孔的尺寸和排列方式,可以灵活地控制光纤的传输特性。光纤中微结构的使用使光纤多方面的物理性能得到了改善,并为光纤在各个领域的应用打开了新局面。事实上,每个应用领域也是利用了PCF由于微结构所赋予的优良特性。PCF为光电子器件的设计提供了新的平台,并展示了许多新的功能。它在通信、非线性光学、传感和光纤器件等许多领域中有广阔的应用前景。由于PCF新颖的结构和具有常规阶跃光纤无法比拟的独特特性,PCF在未来可预见的时间里仍将是一个活跃的研究领域。本论文主要对PCF及相关通信光电子技术进行了理论和实验研究,主要研究内容和创新点如下:1.建立了以各向异性完全匹配层(APML)为吸收边界条件的时域有限差分法(FDTD)PCF计算模型,详细讨论了FDTD差分表达式的推导和APML技术,并成功应用于PCF的特性分析。2.提出了改进的有效折射率方法(IEIM)用于精确分析PCF。IEIM由常规的全矢量有效射率方法(EIM)发展而来,但比常规的全矢量EIM方法具有更高的计算精度。IEIM的计算结果无论是与其他方法获得的精确计算结果,还是与先前文献报道的实验结果相比较都非常吻合,是分析PCF一种有力工具。3.提出了利用具有小正常色散值的色散平坦PCF,在通信波段产生宽带、平坦超连续谱的方法。该类型PCF的色散与波长成凸型函数关系,且没有色散零点。采用数值模拟的方法,详细研究了光纤参量和泵浦条件对超连续谱产生的影响。4.设计了具有小正常色散值的色散平坦PCF用于产生宽带、平坦的超连续谱,并通过光谱滤波获得了多波长脉冲信道。5.结合光子晶体光纤和拉锥的优点,设计了一种锥型光子晶体光纤用于产生宽带、平坦的超连续谱。该光纤具有平坦的色散特性,同时色散值沿光纤长度方向逐渐减小,由正值减小到负值。理论研究结果表明,利用该类型的光纤和具有几个皮秒宽度的泵浦脉冲,可以在通信窗口有效地产生平坦的超连续谱。6.首次利用具有小正常色散值的非线性色散平坦PCF和高重复率的皮秒泵浦脉冲,在1.55μm波段产生了谱宽超过90nm的平坦的超连续谱。该宽带、平坦的超连续谱能同时提供波长间隔为10GHz、超过1100路的多波长载波信道。通过对光谱滤波,实验获得了速率为10Gbit/s的多波长脉冲序列。这样的超连续谱源在DWDM光通信系统、波长变换等方面都有重要的应用。同时结合数值模拟的方法进行了研究,模拟结果与实验结果非常一致。7.提出了基于PCF自相位调制效应的全光再生的方案,理论和实验上论证了其可行性。利用PCF和带宽滤波器,获得了近似阶跃状的功率传输函数和没有发生形变的再生脉冲。该再生器对皮秒脉冲起到良好的再生作用,可用于高比特率数据信号的再生。研究结果表明,具有正常色散的非线性PCF适合于全光2R再生。8.提出了利用具有高非线性和大反常色散值的PCF构成的非线性光纤环路镜(PCF-NOLM)进行脉冲压缩和整形的方案。数值结果表明,该方案能高效地压缩脉冲,并能显著抑止压缩脉冲的基座。9.与他人合作,利用PCF实现了对10Gbit/s脉冲信号色散和色散斜率的同时补偿。在C波段的20nm的波长范围内,利用26m的PCF补偿了2km的标准单模光纤的色散。研究结果还表明,该光纤可在从1520nm到1570nm的50nm波长范围内对标准单模光纤的反常色散进行补偿,残余色散可控制在±0.3ps.nm-1.km-1之内。10.开展了基于PCF中四波混频效应的全光波长变换的研究。与他人合作,利用30m的色散平坦PCF中的四波混频效应,实现了对10Gbit/s光信号的全光波长变换。平均波长转换效率约为-19.5dB、幅度变化小于±1.4dB、转换带宽达20nm。