论文部分内容阅读
为了改善高分子材料的性能,对已有高分子材料进行物理共混改性是一种经济而有效的途径,也是先驱体法制备新一代高性能SiC纤维的研究热点之一。本研究首次将超支化液态聚碳硅烷(LPCS)与固态聚碳硅烷(PCS)进行物理共混改性,得到改性的PCS先驱体。改性后先驱体经过熔融纺丝得到原丝,原丝经氧化交联得到交联丝,最后交联丝在1250℃氮气气氛下热解得到SiC纤维。本论文对上述的制备工艺中的关键基础问题进行了系统研究。LPCS具有与固态PCS相似的分子结构,相容性好,不需要采用复杂的真空冷冻技术,通过普通的物理共混方法便可以得到混合均匀的先驱体,混合过程中没有发现明显的相分离现象,固液混合先驱体的组成和分子结构基本是固态PCS和LPCS的物理叠加。LPCS的加入明显提高了先驱体中Si-H基团的含量,红外谱中Si-H与Si-CH3的比例从0.91(不含LPCS,PCS-0)提高到0.98(含有20%LPCS,PCS-20),核磁氢谱中Si-H与C-H比例从0.096(PCS-0)提高到0.14(PCS-20),有利于后续的交联工艺。在熔融纺丝过程中,有部分PCS和LPCS发生交联反应,消耗一部分的Si-H基团,但先驱体中的大部分Si-H基团得到了保留。经过高温熔融纺丝后,LPCS能够稳定存在于先驱体纤维中。LPCS的加入明显降低了先驱体的纺丝温度,从285℃(PCS-0)降低到205℃(PCS-20)。由于LPCS延长了熔体的固化区间,因此显著改善了先驱体的纺丝性能,纤维的直径和分散系数明显下降,从19.6±1.8μm(PCS-0)降低到15.4±0.5μm(PCS-20)。同时由于纺丝温度的降低,改善了先驱体的热稳定性。LPCS提高了原丝的表面质量,减少纤维表面缺陷。PCS原丝在空气氧化交联过程主要是Si-H键被氧化成Si-OH键,Si-OH与Si-OH发生缩合反应生成Si-O-Si交联结构的过程,此外也有Si-CH3氧化生成Si-OH,促进交联结构的形成。在交联过程中形成的挥发物中,含有水和甲醛,从而首次从实验上证明了SiC纤维的先驱者Yajima教授所预测的氧化交联机理。LPCS促进氧化交联,因此可以在较低温度下实现氧化交联。在150℃氧化温度下,纯PCS交联丝的凝胶含量为0,而含有20%LPCS的交联丝凝胶含量达到80%,这不仅是因为LPCS中含有大量易于与氧反应的Si-H键,而且还因为LPCS分子量较小,通过共混可以均匀分布在PCS分子中,在交联过程中,起到了交联点的作用;LPCS含量10%以上的所有纤维经1250℃热解后均能保持原状不并丝,而LPCS含量5%以下的纤维,经150℃氧化交联和1250℃热解后发生并丝现象。LPCS的加入,可以提高纤维的陶瓷产率,加入10%以上的LPCS,原丝只要经过150℃氧化交联,其陶瓷产率均在81%以上,而经150℃氧化交联的纯PCS纤维陶瓷产率只有77.6%。相同氧化交联温度下,固液混合PCS纤维中含有较多的SiCxOy无定型相,抑制了β-SiC微晶的生成和长大,纤维中的无定型碳的比例高于纯PCS热解纤维。利用固液混合PCS纤维所制备的SiC纤维的拉伸强度(1.76GPa)低于由纯PCS纤维制备的SiC纤维(2.81GPa),这主要是由于氧含量过多以及氧在纤维径向不均匀分布的结果。在空气高温处理过程中,由PCS制备的陶瓷纤维拉伸强度随温度的提高逐渐降低,而由含LPCS先驱体制备的陶瓷纤维拉伸强度保持率在1400℃之前几乎为100%,这主要是因为含LPCS的纤维其表面有一层富氧层,阻止了氧进一步扩散到纤维内部使其继续氧化。