【摘 要】
:
我国是世界上受台风影响最严重的国家之一,台风登陆的地点几乎遍布从华南到东北的沿岸地带,因而对台风的精准预测预报显得尤为重要。自20世纪90年代以来,虽然我国在台风路径的预报方面取得了显著的进展,但是在台风结构和强度变化预报方面进展较缓慢,无法满足不断提高的防台减灾需求。在此背景下,研究台风强度变化和非对称结构对台风强度的影响是关系到国计民生的重要课题,是科学研究的重中之重。因此,本文研究了台风强度
论文部分内容阅读
我国是世界上受台风影响最严重的国家之一,台风登陆的地点几乎遍布从华南到东北的沿岸地带,因而对台风的精准预测预报显得尤为重要。自20世纪90年代以来,虽然我国在台风路径的预报方面取得了显著的进展,但是在台风结构和强度变化预报方面进展较缓慢,无法满足不断提高的防台减灾需求。在此背景下,研究台风强度变化和非对称结构对台风强度的影响是关系到国计民生的重要课题,是科学研究的重中之重。因此,本文研究了台风强度变化最快时动力模式的解析解,以期为研究台风的运动机理与层次结构提供新的理论方向。首先,根据旋转坐标系中的动能方程定义能量泛函,采用变分方法从台风强度变化率最大的动力构成中化能量方程,得到当台风强度变化率达到最大时,摩擦力、气压梯度力、重力和动能梯度满足四力平衡的结论。利用中尺度模式WRF对台风Rammasun(2014)的快速增强过程进行模拟,运用四力平衡的结论确定台风Rammasun在7月17日12时强度变化率达到最大,证明了结论的合理性。其次,利用风场变分分解的方法,提取台风强度变化最快时风场中的有旋气流,得到有旋流场和无旋流场满足的Euler-Lagrange方程,并解得风廓线的表达式。台风的整体结构取决于风廓线H(z),而λ是决定H(z)的主要参数,因此λ决定整个台风的层次结构。采用风场直接分解的方法,得到的涡度方程与变分分解的结果一致,说明用变分方法分解台风风场的可行性。最后,采用常数变易法解极坐标下的涡度方程,得到涡度和有旋流场的解析解。进一步通过数值试验得到,当λ=0时,流线图和流函数图基本呈均匀梯度分布,与实测流场相吻合;当λ(29)0时,n=0时的流线图和流函数图符合实测流场分布,最终得到符合实际的台风强度变化最快时动力模式的解析解。该结果为台风路径和强度预报提供了一定的理论指引,对于研究台风发展过程中速度的变化趋势和流场的结构具有一定的实用价值。
其他文献
在消费升级的大浪潮中,烘焙是鼎盛行业,尤其是在居民营养膳食结构的整改中具备独特作用。很多烘焙相关公司渐渐放弃以往利用过度曝光构建品牌效应的销售方式,转变为使用较为前沿的互联网营销技术结合电商、社交、搜索、内容等各种方式创设新型营销手段。此研究主要针对烘焙企业互联网营销方案展开探究,希望给广大中小型烘焙企业实施互联网营销提供参考。
伴随着人工智能和大数据的飞速发展以及海量数据收集能力的不断提升,超高维数据已经频繁的出现在大众的生活中。庞大的数据量给高维数据分析带来了许多困难与不便,并且超高维数据会常出现在许多领域,如社会科学、医学、金融学、特别是生物学和基因组学。与高维数据相比,超高维数据拥有更为复杂的数据量,分析难度也随之增大,因此对超高维数据的研究是有必要的。本文在超高维数据的背景下,旨在研究针对超高维数据的特征筛选方法
对于卷积神经网络中的图像分类问题,传统的机器学习方法由于是在中心服务器上直接用原始数据进行模拟训练,因而可能导致隐私泄露.而联邦学习则是通过在本地设备上训练模型,不用将原始数据上传至中心服务器,所以一定程度上解决了隐私泄漏的问题.本文研究的主要内容是手写数字识别下的联邦学习优化算法研究.本文是在多个设备共同训练的前提下,对联邦学习优化算法进行改进.首先,针对大规模优化中高昂的计算成本问题,为降低计
随着全球化进程的不断推进,目标检测在安防领域的重要性与日俱增。检测公共场所下的管制刀具等危险物品为人们出行提供了有力保障。然而相关数据集的缺乏限制了检测算法的研究。同时,设备的差异以及光照、遮挡等多种因素的干扰使得通用物体检测算法难以有效发挥作用。因此,进一步研究危险物品检测,构建实时高精度的检测算法显得十分重要。本文主要研究可见光下的管制刀具检测,在构建一种刀具检测数据集的基础上,提出一种基于深
近年来,优化算法理论和应用迅速发展,相关技术被广泛应用于改进传统的降水预测模型,提高预测精度是科研和业务中提升管理水资源决策可靠性的迫切需求。因此,如何科学合理地改进传统的数学模型以提高降水预测精度成为一个亟需解决的问题。本研究基于吉林省2016—2020年50个城市降水量和地面常规气象要素的日值数据,以研究分析吉林省不同等级降水的时空特征为基础,采用灰狼优化算法及差分进化算法优化支持向量机的参数
作为代数学的重要分支,环论研究的地位举足轻重,它的相关理论方法在数学的许多领域都得到了非常广泛的应用.环论在发展和运用的过程中,产生了许多新的研究课题,其中环的clean性研究是近年来的一个重要研究热点,因其结构简单、性质良好、且与许多相关环类紧密联系的特点,吸引了许多环论学者的兴趣.因此,研究环的clean性是非常有意义的.本文主要研究三种类似于clean环的环:2-诣零-clean环、强2-幂
由于降水是在一系列复杂物理过程的影响下形成、受多种天气系统共同作用的气象要素,提高其预报准确性是气象业务与科研工作的重点与难点。本文基于CMPA逐小时降水和TIGGE提供的六种不同预见期24h累积降水的观测和模式资料,在福建及其周边地区采用贝叶斯模式平均(Bayesian Model Averaging,BMA)方法开展降水集合预报统计后处理研究。针对BMA方法结构修改角度,开展其对降水预报精度影
准确分析和判断脑组织的具体分布是医生制定有效治疗方案的基础保证,而其中脑图像分割又是脑定量分析图像的关键步骤。有限混合模型是图像分割中应用最广泛的模型之一。然而,受到一些因素的影响,脑MR图像中可能存在一些灰度不均匀伪影和噪声,这导致脑MR图像的直方图可能服从重尾分布或非对称分布。所以,传统的有限混合模型,如高斯混合模型,在分割此类图像时难以获得准确的分割结果。针对这些问题,本文在有限混合模型基础
图像分割是计算机视觉的核心问题之一,旨在为每个像素分配一个类标签,在交通、军事、医学、遥感等领域应用广泛。随着各个领域内硬件设备不断发展,人们需要处理的图像越来越多样化。然而,对于普通拍摄或医学领域的小样本图像分割任务,传统分割方法的结果常受到各种噪声影响,图像的分割质量欠佳。而在遥感领域的分割任务中,由于遥感图像数据庞大、尺度多样且背景复杂,人们常借助基于深度学习的方法进行图像分割。同时,物体遮
近年来,许多专家学者对Hessian型方程及不等式做了大量研究,得到了解的存在性或不存在性结果.这些Hessian型方程及不等式不仅在偏微分方程理论中具有重要的研究价值,而且在几何问题和最优运输问题中也有许多应用.本文主要研究的是几类共形Hessian商不等式全局正解的不存在性,分为椭圆型、抛物型和双曲型.首先,我们研究了单个椭圆型共形Hessian商不等式以及耦合的Hessian商不等式组全局正