论文部分内容阅读
本论文以石墨烯(graphene)系及碳包镍(Ni@C)为起始碳材料,制备了一系列碳基氧化物或硫化物复合光催化材料,并较系统、深入地研究了材料的组成、微结构、形貌和光吸收性能等对光催化制氢效率和反应机理的影响。其主要研究内容和结论归纳如下:(1)采用改进的Hummer法制备了氧化石墨(GTO),然后以GTO和Ti(SO4)2为原料,水热法制备了GTO-TiO2纳米复合材料。该复合材料中平均粒径约为20nm的TiO2纳米颗粒紧密附着在GTO表面,边沿或插入GTO层间,形成了较紧密的联结。不同复合比例的GTO-TiO2均显示出了可见光催化制氢活性,其中2wt%GTO-TiO2制氢效率最高,负载1wt%Pt后达到380μmol h-1,与单纯的GTO相比提高了91.7倍。GTO-TiO2在350-550nm波长范围的单色光照下均表现出可观的光催化制氢活性,在420nm的单色光照下的表观量子效率为8.2%,并显示出良好的光稳定性。本体系中GTO起到了类似染料敏化剂的作用,可将体系的光谱响应范围从紫外光区拓展到可见光区,并可实现GTO的光生电子向TiO2的定向迁移,抑制光生载流子的复合,从而极大地提高体系的光催化制氢活性。因此,我们认为GTO-TiO2复合材料是一种宽光谱响应、高效、稳定的光催化材料,具有潜在的应用前景。(2)以石墨烯系碳材料(GT,GO,RGO)为原料,采用沉淀和溶剂热法分别制备了石墨烯系碳-CdS纳米复合材料。溶剂热过程导致GO还原形成RGO-CdS(S),而共沉淀过程仍形成GO-CdS(P)。两类复合材料中CdS的团聚均受到抑制,但溶剂热制备的RGO-CdS(S)中复合组员间形成了更紧密的结合。与CdS相比,石墨烯系碳-CdS都表现出更优良的可见光催化制氢活性和长效稳定性。其中,共沉淀制备的复合物中5wt%GO-CdS(P)具有最佳的可见光催化制氢效率(314μmol h-1),而溶剂热法制备的复合物中10wt%RGO-CdS有最高的光催化活性(420μmol h-1)。GO-CdS(P)和RGO-CdS(S)在420nm处的表观量子效率均分别为4.8%和10.4%。石墨烯系碳材料一方面作为支持物抑制光腐蚀,另一方面又作为电子导体促进载流子的分离。RGO-CdS(S)的复合组员间形成了更紧密的结合,有利于发挥协同效应,具有更高的光催化活性,因而更具应用前景。(3)以Ni@C为原料,水热法制备了Ni@C/TiO2复合材料。该复合材料中TiO2为长在40-120nm之间、宽约10nm的锐钛矿相纳米棒结构,且Ni@C仍保持原有结构。Ni@C结构是复合材料显示出可见光催化活性的前提,但是Ni@C本身的光催化制氢能力有限,Ni@C/TiO2比Ni@C高一个数量级,达到300μmol h-1,并表现出优良的长效稳定性。在350-550nm波长范围内的单色光光照时均显示出可观的光催化活性,其在420和520nm单色光照时的表观量子效率分别达12%和7%,且不需要负载Pt等贵金属,因而本体系具有更好的实际应用前景。虽然Ni@C/TiO2体系的详细的光激发及其电子转移机制尚需进一步证据,但是这种由廉价Ni@C组成的碳基材料在与TiO2复合后显示出了良好的可见光催化制氢活性与长效稳定性,为开发新型、廉价、高效的可见光响应的光催化材料提供了一条新的思路。(4)以Ni@C为原料,溶剂热法制备了Ni@C/CdS复合材料。该复合材料中Ni@C的粒径约为50nm,CdS的粒径约为5-10nm。不同复合比例的Ni@C/CdS均表现出增强的光催化活性和长效稳定性。其中,5wt%Ni@C/CdS的光催化活性最高,达到610μmol h-1,与单纯的CdS相比,制氢效率提高了2.2倍。在420nm单色光照下的表观量子效率高达20.5%,远高于上述的GTO-TiO2、RGO-CdS以及Ni@C/TiO2,且不需要负载Pt等贵金属。Ni@C/CdS复合材料光催化制氢体系中Ni@C与CdS紧密接触,形成类似于Pt/CdS的Schottky能垒,有利于促进光生载流子的分离,从而提高体系的效率。这种复合材料的制备为开发无贵金属负载的高效、廉价光催化体系提供了一条新思路。