【摘 要】
:
本论文采用密度泛函理论(DFT)计算系统研究了Ru掺杂Fe催化剂上酚类化合物加氢脱氧反应机理,从Ru掺杂方式、Ru掺杂量以及Fe-Ru双金属组成结构等方面阐明了酚类加氢脱氧反应的构-效关系及双金属协同催化的微观本质,为未来高效加氢脱氧催化剂设计合成提供了重要理论基础。计算结果表明,Ru掺杂能促进H2分子在Fe(211)表面上解离,提高加氢脱氧反应速率,表面H*覆盖度对酚类化合物在催化剂表面上的稳定
论文部分内容阅读
本论文采用密度泛函理论(DFT)计算系统研究了Ru掺杂Fe催化剂上酚类化合物加氢脱氧反应机理,从Ru掺杂方式、Ru掺杂量以及Fe-Ru双金属组成结构等方面阐明了酚类加氢脱氧反应的构-效关系及双金属协同催化的微观本质,为未来高效加氢脱氧催化剂设计合成提供了重要理论基础。计算结果表明,Ru掺杂能促进H2分子在Fe(211)表面上解离,提高加氢脱氧反应速率,表面H*覆盖度对酚类化合物在催化剂表面上的稳定吸附构型和吸附强度影响不大。在1Ru-Fe(211)表面上,酚类通过苯环与表面相互作用发生水平吸附比通过羟基与表面相互作用发生垂直吸附更加稳定。酚类在1Ruads-Fe(211)吸附表面上吸附比在1Rusub-Fe(211)取代表面上更稳定,而且苯酚和邻甲酚脱羟基步骤能垒分别降低0.13 e V和0.28 e V,这更有利于生成目标产物芳烃。愈创木酚在1Rusub-Fe(211)取代表面上加氢脱氧优势路径是先脱甲氧基生成苯酚,苯酚再加氢脱氧生成产物苯(速控步骤能垒为1.16 e V);而在1Ruads-Fe(211)吸附表面上愈创木酚先脱羟基再脱甲基生成苯酚的路径更具有动力学优势(速控步骤能垒为1.21 e V)。Ru掺杂方式不同影响催化剂表面结构和电子性质,进而影响Fe催化剂对酚类反应物的吸附稳定性以及加氢脱氧反应路径和催化性能。本文还考察了Ru的掺杂量对酚类化合物吸附活化和加氢脱氧反应性能的影响。与1Ruads-Fe(211)催化剂相比,4Ruads-Fe(211)表面上苯酚CAr-O键断裂直接脱氧的反应能垒升高0.75 e V,不利于芳烃生成。在酚类苯环上发生直接加氢的能垒、苯环加氢饱和后再脱羟基的能垒均低于酚类发生CAr-O键断裂直接脱氧反应的能垒,因此,在4Ruads-Fe(211)催化剂表面上酚类反应物更容易通过苯环加氢路径进行加氢脱氧,最终生成环饱和产物。增加Ru原子数目形成团簇吸附的4Ruads-Fe(211)结构,能够进一步提高酚类反应物的吸附强度;进一步提高Ru掺杂量形成Fe Ru(111)合金表面,发现酚类反应物吸附比1Rusub-Fe(211)取代表面更稳定。理论计算研究结果表明,在Fe催化剂中掺杂Ru能够改变Fe催化剂表面结构和电子性质,进而影响反应分子的吸附活化和酚类的加氢脱氧性能。其中,Ru以表面吸附形式并进行少量掺杂更利于酚类加氢脱氧高选择性生成芳烃。
其他文献
天空偏振光分布模式具有丰富的地理位置信息,可为偏振光导航提供稳定的导航信息。太阳光属于一种自然光,而光是一种电磁波。太阳光在传输过程中,被大气层中的气体分子、气溶胶粒子、云等各种大气因素散射和吸收,并伴随地表的吸收和反射,在天空中形成稳定的天空偏振光分布模式。它提供了太阳子午线、中性点和偏振方位角等重要信息,这些信息对导航至关重要。因此,迫切需要建立接近实际大气的理论模型进行模拟分析,并对实际环境
大量化石燃料的燃烧排放出过量的CO2气体,同时引发的能源供应紧张和全球变暖问题限制了人类社会的可持续发展。在多种CO2转化途经中,光催化技术以半导体材料为光催化剂,利用光生电子将CO2还原为化学品和燃料,是可以同时解决能源和环境问题的有前途的途径。由于CO2分子极高的化学稳定性,目前光催化CO2转化效率不高,亟需发展高效的光催化剂。聚合氮化碳(CN)由于具有可见光响应、易制备、低成本和化学性质稳定
目的 研究探讨现状-背景-评估-建议(SBAR)沟通模式的一体化急救护理在重症监护室(ICU)患者急诊抢救中的应用效果。方法 选取ICU在2020年1月~2022年1月收治的120例患者为对象,随机抽签法分为对照组、观察组,各60例。对照组以常规护理干预,观察组采用SBAR沟通模式的一体化急救护理干预。评估比较两组患者的急诊抢救效果、不良事件发生率、护理质量、家属满意度等。结果 观察组患者血压、脉
ε-己内酯是一种重要的有机中间体,其开环聚合的产物聚己内酯(PCL)具有良好的生物相容性及可降解性,在药物释放、可降解材料等领域有着广阔的应用前景。生产ε-己内酯的主要路线为环己酮与氧化剂发生氧化反应生成己内酯(Baeyer-Villiger oxidation rearrangement)。传统B-V氧化反应一般使用过氧酸作为氧化剂,会产生大量的废酸溶液,并且过氧酸易分解不利于储存运输。以过氧化
某超临界机组低压转子末三级叶片发生开裂,取样进行了宏观检验、化学成分分析、显微硬度试验、力学性能试验、显微组织及能谱分析。结果表明:叶片热处理工艺控制不当,导致在出汽侧边缘形成宽约20mm的硬化层和不均匀马氏体组织,材料耐蚀性下降;机组运行时汽水品质不佳,存在Cl、S等腐蚀元素,叶片形成腐蚀点坑;在叶片离心力产生的拉应力和残余应力的共同作用下,在应力集中的出汽侧边缘点坑处萌生微裂纹,继而发生应力腐
肺癌是我国发病率和死亡率最高的癌症,给医疗保健系统带来了巨大压力。老年人是肺癌的高发人群,老年肺癌患者易发生衰弱,衰弱会增加其术后并发症、放化疗不良反应、全因死亡风险、住院时间及再入院率,严重影响预后。而衰弱具有一定的可逆性,因此早期发现和采取相应的干预措施至关重要。本文对老年肺癌患者衰弱的危险因素、与不良健康结局的相关性及干预策略进行了综述,以便临床上尽早识别老年肺癌患者的衰弱状态,并进行早期干
海上风电作为一种开发可再生能源的新兴产业,如今在全球已取得了飞速发展。由于海洋环境的特殊性,钢桩基础通常用于海上风机的支撑或固定,但这类钢桩一般具有大直径、大自重、大长度和桩体光滑的特点,因此给基础施工中的吊装作业带来了困难。传统的吊装方式效率低、风险大且适用性差,而专业的吊桩装备一直由国外垄断,我国目前还仅处于探索阶段。为了提高钢桩的吊装作业效率,降低我国海上风电建设成本,本文设计并研究了一种用
复合材料层压板固化过程中产生的热化学和热力现象是造成零件残余应力及变形的主要原因,且Z形复合材料层压板在航空发动机总体结构上应用潜力大,因此需对Z形层压板的固化成型进行优化分析。建立固化度相关的理论模型,利用ABAQUS软件二次开发功能进行有限元仿真分析,进行正交试验设计,分析了转接半径、铺层数量及堆叠顺序等设计参数对Z形层压板固化变形的影响。分析结果表明,树脂模量、固化度和成型过程温度有较大关联
海洋温差能是一种输出较为稳定而储量巨大的可再生能源,相较于储量有限且存在环境污染问题的传统能源,其发展潜力十分巨大。海洋温差能发电装置根据工作地理位置的不同可分为岸基式和浮式两种。相较于岸基式温差能发电装置,浮式温差能发电装置的取水管道长度小,且不需要陆上场地、部署更加灵活。取水立管将深层冷海水提升到海面处,属于大长径比海洋结构物,本身固有频率小,其在工作中受到海流、波浪等环境载荷作用易发生涡激共
随着我国经济不断发展,科技实力的逐渐提升以及现代工业技术的发展,海洋领域的开发愈来愈重要,而这方面的发展又受制于普通均质材料在海洋严苛环境下的性能不足,性能优异的金属层状复合材料研究十分必要。在海洋环境中,材料会受到多种载荷的共同作用,因此对金属层合板在静动态载荷下的力学性能研究具有重要的科学意义。基于上述问题,本文做了如下研究:(1)设计了并制备了五层及八层铜层状复合材料,利用光学显微镜、扫描电