论文部分内容阅读
摘要:随着我国社会经济发展,城市化进程不断加快,交通需求日益加剧,对城市交通功能提出了更高的要求和挑战。城市轨道交通以其运量大、快速、准时、便捷、安全、环保等突出特点,已成为各大城市解决交通拥堵首选交通方式。同时,为保护轨道交通沿线敏感地段(诸如学校、医院等)免受振动影响,目前在建的轨道交通多采用了不同类型的减振措施,其中铺设梯型轨道结构是采用较多的减振措施之一。但是,在线路开通运营后,部分使用梯型轨道结构的线路不同程度地出现了振动噪声加剧及钢轨异常波磨现象。为解决该异常现象,本文在总结归纳前人研究的基础上,从轮轨系统振动角度出发,对该异常现象的产生机理及防治措施进行了综合分析,其主要研究内容和结论包括:(1)建立列车动车轮对和拖车轮对分析模型,分析轮对垂向振动和扭转振动特性,并进一步分析电机位置和一系悬挂参数对轮对垂向及扭转振动特性的影响。研究表明,电机位置对轮对垂向振动特性影响较小,而对其扭转振动特性影响较大,且电机设备距离轮对中心越远,轮对的二阶扭转共振频率越大;一系悬挂参数仅影响轮对一阶垂向振动特性(即刚体振动),而对其他频率振动特性影响较小。(2)结合现场测试分析得知梯型轨道结构的钢轨波磨相关频率;建立梯型轨道结构振动传递特性分析模型和轮对-轨道系统耦合频域分析模型,分析了梯型轨道结构振动特性,并揭示了梯型轨道结构振动与钢轨波磨之间的密切关系。研究表明,梯型轨道结构共振和车轮的锤击循环作用是钢轨波磨产生和发展的主要原因。(3)建立车辆-轨道耦合动力学模型,分析了不同行车速度和列车轴重所激起梯型轨道结构的主要振动特性。研究表明,除行车速度降至20km/h以下外,其他行车速度激起的钢轨主要振动频率均与钢轨波磨相关频率相近;列车轴重对梯型轨道结构的主要振动频率影响较小。(4)分别利用梯型轨道结构振动传递特性分析模型和车辆-轨道耦合动力学模型,分析了扣件参数(包括扣件刚度、扣件阻尼及扣件间距),轨枕参数(包括轨枕质量、轨枕长度、轨枕截面高度和轨枕截面宽度),减振垫层参数(包括减振刚度、减振阻尼及减振间距)对梯型轨道结构振动特性的影响,尤其对引起钢轨波磨的轨道共振特性的影响进行了分析。研究表明,仅通过调整某一结构参数较难达到减缓钢轨波磨产生和发展的目的,需要进行各结构参数最优匹配的综合研究。(5)为了减缓已运营线路中梯型轨道钢轨波磨的产生和发展,分别运用基因遗传算法和多点近似算法,对扣件刚度、扣件阻尼、减振垫层刚度及减振垫层阻尼等4个参数进行了综合优化分析。研究表明,可通过调整这4个参数达到控制梯型轨道结构振动,减缓钢轨波磨产生和发展的目的,并给出了各相应参数的建议值。(6)为了在设计阶段有效避免轮/轨共振,控制轨道结构振动,并有效预防梯型轨道结构钢轨波磨的产生,利用多点近似算法,对扣件刚度、扣件阻尼、扣件间距、轨枕长度、减振垫层刚度、减振垫层阻尼及减振垫层间距等7个参数进行综合优化分析。研究表明,可通过调整这7个参数达到控制梯型轨道结构振动,预防钢轨波磨产生和发展的目的,并且给出了各相应参数的建议设计值。(7)7参数优化结果优于4参数优化结果,4参数优化结果优于纵连轨枕结果,因此,在已运营线路上,应首先采用4参数优化结果,在尚未建设的梯型轨道结构上,应首先采用7参数优化结果,以减缓钢轨波磨的产生和发展。若条件暂不成熟(如:尚无研发出相关参数的扣件或减振垫层等),可采用纵连轨枕的方法减缓钢轨波磨的产生和发展,此时纵连轨枕需满足两个条件:①轨枕片数大于或等于15片;②减振垫层阻尼大于或等于20kN·m/S。