小波分析与积分方程的数值解

来源 :中山大学 | 被引量 : 0次 | 上传用户:xj3301365
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
第一章主要介绍了与论文相关的基础知识,以及它所涉及到的相关主题的深入分析.第二章深入讨论了上半平面调和方程的数值解问题.第三章研究了数值Bergman核数值逼近的小波方法,Bergman核在复分析和椭圆型方程中占有重要地位,它与Riemann映射、Green函数、Neumann函数、Szego核等有着密切联系.第四章介绍非线性积分方程数值解的小波方法.
其他文献
该文定义了参数α在(0,1)上取值的右尾偏差D[X],用之来度量右尾风险.文章 讨论了D[X]的基本性质,收敛性与矩之间的关系,以及与历尾偏差有关的极限行为等 ;针对常见的7种右尾
学位
设B为Banach空间F:D→B(D属于B)为Frechet可微算子,xF(x)=0的解,若F′(x)为一奇异线性算子,研究人员称之为奇异问题,该文研究人员考虑用非精确的迭代格式 求解奇异问题.主要
互补问题自从1963年被G.B. Daatzig和他的学生R.W. Cottle提出后,它的理论和算法就在实际中有着广泛的应用,特别是在各种经济分析、交通平衡策略以及工程领域等中更显出它的
抽样调查中的抽样误差主要由抽样误差和非抽样误差组成.关于抽样误差的研究已经有较系统的研究,但对于非抽样误差的研究,特别是连续调查的研究还相对薄弱.非抽样误差包括抽样
非线性方程是描述自然现象的一类重要数学模型,也是非线性数学物理特别是孤立子理论最前沿的研究课题之一。同时,非线性方程的精确解不仅可以定量地描述非线性偏微分方程(组)
学位
所谓解的渐近性质就是指当t→∞时解的性态,它包括:吸引性,渐近稳定性,振动性,振动趋于零或振动而振幅无限增大,或振幅有界等,这些性质揭示了动力系统的长期行为,因而在众多
学位