论文部分内容阅读
随着移动便携式电子产品的发展与普及,有限的电池容量造成设备供能的紧张。为适应集成电路低功耗发展的的大趋势,NTV(Near Threshold Voltage,临近阈值电压)技术的出现使电路具有更高的能量使用效率成为可能。本文基于SMIC 65nm工艺,通过对加法器中XOR-XNOR单元、求和单元和进位单元的改进,设计了一种在NTV供电条件下工作的高能量使用效率的快速加法器。主要工作如下:1.对加法器的XOR-XNOR单元进行了设计。首先,将传统的XOR-XNOR单元分为弱电信号、非平衡式输出和有比逻辑三大类,讨论了它们在低电压下性能的恶化情况,分别为:a)不完整的电路输出摆幅会造成高低电平的误判;b)不同步的输出会产生不期望的电路毛刺;c)反馈结构会使电路的性能依赖晶体管尺寸的调节。为了保证电路的速度,在临界阈值电压下,设计了一种不依赖晶体管尺寸调节的、可提供平衡式全摆幅输出的XOR-XNOR电路结构。2.对加法器的求和单元进行了设计。首先分析了模块间信号相互干扰的问题,利用CMOS栅端的绝缘特性,提出一种隔离式的求和电路结构,可避免因传输管结构双向导通造成的电信号干扰。然后,针对信号争抢的问题,采用尺寸切割的方法对电路进行改善,减小了信号争抢引起的速度性能损失。3.对加法器的进位单元进行了设计。由于进位单元中PMOS晶体管导通速度很慢,因此通过增加反相器中PMOS上拉网络的路径,设计了一种快速的反相器,改进了进位单元,使其具有全摆幅电路输出的良好驱动能力。4.基于SMIC 65 nm CMOS工艺,通过HSPICE分别对加法器的XOR-XNOR单元、求和单元和进位单元的改进情况进行了验证。仿真结果显示:1)在0.3V~1.2V的电压下,与传统XOR-XNOR电路相比,改进的XOR-XNOR单元速度最快,能量使用效率最高,当电源电压为0.4V时,电路速度改善了57%~98%,能量使用效率改善了72%~2926%。2)在0.3V~1.2V的全供电电压范围内,尺寸切割的方法在几乎不影响求和电路功耗与面积的条件下,使速度和能量使用效率均有提高。当电源电压为0.4V时,求和电路速度可提高38%,能量使用效率可改善57%,而功耗的影响可以忽略不计。3)在0.3V~1.2V的电压下,PMOS上拉网络速度均得到了改善。当供电电压为0.4V时,与传统的电路相比,改进的反相器功耗仅增加了2%,而进位电路的速度提升了54%,能量使用效率较原来提高了66%。5.在近阈值的低供电电压下,通过对XOR-XNOR单元、求和单元和及进位单元综合的优化,完成了一种高能量使用效率的快速加法器的设计。基于SMIC65nm工艺,在0.3V~1.2V的全供电范围和121种完全输入信号切换的条件下,本文设计的加法器与6种传统的加法器进行了综合性能的比较。仿真结果显示:在全供电电压范围内,本文的近阈值加法器的速度最快,能量使用效率最高,且具有完整的电路输出摆幅。当电源电压为0.4V时,电路的功耗为7.11×10-9W,较标准电源电压下的功耗缩小了2095.64倍;与传统的加法器相比,电路的速度改善了35.7%~54.7%,能量使用效率提高了53%~139.7%。