论文部分内容阅读
目前,我国的家电及电子产品已达到淘汰报废的高峰期,报废量每年达100多万吨,而且国外又有大量的电子垃圾流向国内。但国内缺少无污染和全部资源化处理电子垃圾的技术和装备,落后的处理方法造成严重的环境污染和大量的资源浪费。印刷电路板是电子工业的基础,其中部分贵金属的含量是天然矿藏品位的几十倍甚至几百倍,具有很高的回收价值。电路板是玻璃纤维强化树脂和多种金属的混合物,其中金属和非金属紧密结合,分离难,是电子垃圾中最复杂、最难处理的,处理时要求技术含量高。目前国内处理废旧印刷电路板主要采用破碎后利用密度差的气流风选和水选进行金属与非金属的分离,存在效率低和二次污染等问题。因此,急需研究对废旧印刷电路板无害化处理和资源化利用的技术与装备。本研究通过理论分析,自主研发破碎机与高压静电分选机并对废旧印刷电路板进行无害化、资源化处理。首先研究电路板的破碎特性,利用MATLAB模拟分选空间的高压静电场分布,并通过MATLAB编程模拟金属颗粒的运动轨迹;由非金属颗粒的动力学分析得到电选机转辊的临界转速模型;对电选机应用于分离混合金属颗粒领域进行了探索;最终实现可工业应用的处理废电路板的成套生产线,为废旧印刷电路板无害化处理与资源化技术的开发提供理论依据,并为推动该技术走向工业应用奠定了基础。自行研制破碎机与高压静电分选机,确定剪切式旋转破碎机和冲击式旋转破碎机相结合的两级破碎方式对废旧印刷电路板进行破碎,使电路板中金属成分和非金属基板有效解离。剪切式旋转破碎机的工作转速为1440 rpm,转子半径为0.25 m,冲击式破碎机工作转速为2000 rpm,转子半径为0.2 m。高压静电分选机的供电系统最高电压达30 kV;电极结构为丝状电晕极与柱状静电极相结合的复合电极结构;电极位置可调;接地转辊表面镀铬处理,转速可调(10 rpm-1000 rpm)。Type-A(来自废旧电器)物料破碎后颗粒尺寸在1.2 mm以下达到完全解离,Type-B(来自电路板厂废料)物料破碎后颗粒尺寸在0.6 mm以下完全解离。破碎后电路板物料颗粒形状以球状和片状及多棱角状为主。MATLAB模拟高压静电分选空间电场强度分布,发现电场强度最大值位置偏向于静电极方向。不同工艺参数下电场强度分布表明,加大电压、采用复合电极结构、减小电极与接地转辊间的距离、增加静电极半径、减小静电极角度、加大电晕电极角度等参数变化可以提高电场强度,改善分选效果。当电选机工艺参数为以下范围时,可以得到较好的分选效果:U = 20 kV-30 kV, L = L1 = L2 = 0.21 m, R1 = 0.114 m, R2 = 0.019 m,θ1 = 20°,θ2 = 60°。建立了金属颗粒运动轨迹模型。该模型适用于多组电选机工艺参数的优化组合,为提高高压静电分选机的金属回收效率及扩展分选机的应用领域提供理论依据。应用模型对颗粒尺寸与受力关系的分析得到:小尺寸颗粒(r0 < 0.1 mm)受到外界因素影响更大,易出现特殊运动轨迹,破坏分选过程,在分选前应调整电选机的工艺参数,避免碰撞现象发生。在非金属颗粒的带电过程与受力模型基础上,建立高压静电分选机转辊的临界转速模型,得到颗粒饱和荷电判定方程。同时提出了“临界荷电转速n*”、“临界脱离转速n’”与“临界转速N”的概念。并得到提高临界脱离转速的方法:1)增加电晕极数量可增大电晕区宽度和电晕电场强度,从而提高临界荷电转速(n*);2)避免火花放电的前提下,提高电压并减小电极之间的距离,以提高电晕电场强度及颗粒的荷电量;3)改变转辊的曲率和电晕极位置,以减少颗粒在转辊表面的电荷损失。高脱离转速可同时提高非金属回收率与金属纯度,对高压静电分选机参数设置具有重要的指导意义。计算机模拟混合金属颗粒的运动轨迹,拓展了高压静电分选机的应用领域。通过分析高压静电因素,机械因素,物料因素对混合金属颗粒分选的影响效果,得到一组优化工艺参数用于分选铜铝混合颗粒:U = 30 kV, R2 = 0.025 m,α= 30°, L = 0.07 m, H = 0.28 m, R1 = 0.125 m, n = 60 rpm, r0 = 0.2 mm。在对废旧印刷电路板的破碎及高压静电分选的理论研究基础上,设计制造了一套处理废旧印刷电路板的生产线。生产线处理量可达300 kg/h,分选效率达到90%。为我国废旧电路板处理与资源化达到国际先进水平,提供绿色处理技术和先进的装备,对我国经济、社会和环境的可持续发展战略具有重要意义。