纳米SiO/CdS复合粒子的制备及应用

来源 :西安科技大学 | 被引量 : 0次 | 上传用户:liping668
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米复合材料指内含弥散相尺寸在1~100nm间、具有某些特殊物理化学性能的纳米固体。纳米复合材料兼有纳米材料和复合材料的许多优点,而且克服了由于纳米粒子在制备、储存以及使用过程中,极易发生团聚或与其他物质吸附而使表面能降低、表面活性降低、表面积减少,进而丧失了优异特性,导致实际使用性能不佳,效果不理想的缺点。 本论文制备出CdS离散分布在纳米SiO2表面上的纳米SiO2/CdS复合粒子,并探讨其生成机理,总结其在光催化、稳定的Pickering乳液中应用的规律。 采用Stober法,以正硅酸乙酯(TEOS)作为硅源,用氨水作为催化剂,无水乙醇为共溶剂,制备出纳米SiO2粒子,并对其生成机理进行探讨。纳米SiO2粒子的扫描电子显微镜(SEM)照片表明:纳米SiO2粒子的平均粒径随着氨水、蒸馏水和正硅酸乙酯加入量的增多而增大。 采用少量多次复合的方法,用硫代乙酰胺(TAA)和硫酸镉(CdSO4)对纳米SiO2粒子进行复合,得到纳米SiO2/CdS复合粒子。通过对不同条件下制备的复合粒子扫描电子显微镜(SEM)照片的对比,总结出制备纳米SiO2/CdS复合粒子的最佳条件。即在50℃时,先加入硫代乙酰胺溶液和无水乙醇,且将硫代乙酰胺和硫酸镉物质的量比例保持在3:2,用氨水调节pH到9,反应8小时。通过改变复合次数得到不同CdS复合量的纳米SiO2/CdS复合粒子。 将纳米SiO2/CdS复合粒子用于光降解甲基橙溶液,检测不同复合粒子的催化效率。分别讨论了在相同条件下不同复合次数的粒子、相同粒子不同催化时间和不同粒子加入量的催化效率的规律。结果表明,随着复合次数的增多、催化时间的增长和复合粒子加入量的增大,降解甲基橙溶液的效率升高。 将纳米SiO2/CdS复合粒子应用于制备稳定的Pickering乳液。通过改变复合次数得到不同的纳米CdS/SiO2润湿性的复合粒子。用沉降法定性的检测其润湿性,结果表明,复合粒子的疏水性随着复合次数的增多而增强。在苯乙烯-水体系中制备了稳定的Pickering乳液,结果表明,随着纳米复合粒子疏水性的增强,生成的乳液球的平均半径增大,数量增多。通过加入偶氮二异丁腈引发聚合,制备固定的Pickering乳液。在水和聚苯乙烯的界面上,不同润湿性的复合粒子在凹面和水平界面呈现出不同分布,亲水性较强的复合粒子更容易分布在水平界面上,疏水性较强的更容易吸附在凹界面上。
其他文献
随着社会的发展和人们生活水平的提高,人们对织物洗涤剂的要求也越来越高。不仅要求织物洗涤剂能去除各种顽固性污渍,而且希望织物洗涤剂能够使洗后织物柔软,多种色调衣物混洗不串色等。本文主要研究了用于织物洗涤剂去污性能、柔软性能及防串色性能的评价方法。  要评价织物洗涤剂的去污性能,就需要有相应的载体,人工污布是最常用的载体之一。本文选取红酒、辣椒油、橙汁、八宝粥、番茄酱、红茶、咖啡七种日常生活常见污渍,
聚季铵盐是目前使用量较大的一类高分子表面活性剂,在石油化工、造纸、纺织印染、日用化学品、污水处理、消毒杀菌等领域具有良好的应用前景。目前,聚季铵盐的制备主要是利用具有不饱和双键的季铵盐单体进行均聚得到,所制备的聚季铵盐特性粘度低且应用范围窄。为了提高聚季铵盐的特性粘度,拓展其应用范围,采用季铵盐单体与其他单体进行共聚合成聚季铵盐的方法引起了研究者的关注。  本文以水溶性较好的甲基丙烯酰氧乙基三甲基
双烷基二苯醚双磺酸钠(Cn-DADS)是一种双子表面活性剂,具有许多特殊的性能。该类表面活性剂通常以烯烃和二苯醚为原料进行烷基化反应得到烷基二苯醚,然后磺化、中和得到。环境问题的日益突出,使得化工产业的绿色化成为主流,在烷基化反应中,SO42-/ZrO2固体超强酸催化剂因后处理简单、环境污染小等特点备受关注。本文通过浸渍法和研磨法制备SO42-/ZrO2固体超强酸,并优化了制备工艺。同时考察了烷基
光催化技术作为一种新兴的废水处理技术,近年来受到学者的广泛关注。二氧化钛(TiO2)是最常见,最易得且应用最广泛的光催化剂,但其明显的缺陷(禁带宽度大,量子效率低)限制了它的进一步应用,而碳量子点可以对TiO2敏化以提高其的光催化性能。本论文中,先将富勒烯炭灰量子点(F-CQDs)和石墨粉碳量子点(G-CQDs)分别敏化TiO2,得到两种不同的二元复合光催化剂,又使用F-CQDs和银纳米粒子共同敏
学位
金属材料具有良好的机械性能,在各大领域都发挥着至关重要的作用。金属腐蚀不仅影响基础设施与工业设备的可靠性,而且还有可能诱发重大安全事故危害社会安全。聚苯胺具有制备工艺简单、原料廉价、性质稳定等优点,是防腐领域内研究最多的一种导电聚合物。但聚苯胺分子链是典型的刚性结构,不溶不熔的性质限制了聚苯胺的应用。为提升聚苯胺的防腐性能以及改善其在环氧涂料体系中的分散稳定性,本论文分别设计合成了两种酸掺杂的聚苯
学位
锂离子电池(LIB)因为环保,能量密度高的优点受到了广泛的关注,其在新能源领域也取得了一定的成功,但是目前LIB负极材料的比容量和电化学性能已经无法满足市场的实际需求,因此亟需开发新型高性能电极材料。近年来,中空纳米材料由于其特殊结构所带来的具有丰富的电化学活性位点,有效促进电荷传输等优良特性,在能量存储转化方面展现出具有改善电化学性能的巨大潜力而受到了广泛关注。金属有机框架(MOF)是一类新型无
近年来,抗生素作为功能性添加剂,常用于水产养殖业中以减轻传染病、提高生长性能及增强免疫力。益生菌作为一种有益的活性微生物,可赋予宿主多种有益的作用,在水产养殖业中备受青睐。但是,抗生素的滥用会导致包括益生菌在内的生命体的死亡和功能性丧失。因此,设计辅助益生菌抵抗抗生素危害的防控材料,探索提高益生菌生物活性的新方法是保护益生菌的重要措施。本论文拟构筑可“穿-卸”的人造细胞壁,通过人造细胞壁对酿酒酵母
学位
相较于表面活性剂稳定的乳液,固体颗粒稳定的Pickering乳液具有低的乳化剂用量、高的稳定性能和绿色环保等优点,引起了食品、日用化学品、医用材料等行业的广泛关注。在实际应用过程中,表面活性剂通常会与固体颗粒同时出现,因此研究颗粒与表面活性剂间的相互作用尤为关键。蒙脱土(MMT)储量丰富、成本低廉,但因其极强的亲水性导致其不能直接作为乳化剂。本论文通过对蒙脱土进行有机疏水改性减弱其亲水性,制备了多
学位
水系钠离子电池是一种成本低廉、安全可靠、易于维护的新型化学电源,可以通过充放电方式将电能转化成化学能,然后通过放电方式将化学能转化成电能,在可再生领域展现出重要应用前景。NASICON型磷酸盐电化学活性高,是一类有应用潜力的水系钠离子电池电极材料。但是,这类材料在水系电解液中结构不稳定,易发生化学溶解,循环性能不足。本论文通过采用阳离子掺杂、表面包覆等策略设计高性能的磷酸盐电极材料,并组装出能够稳
世界范围内生态环保意识的不断加强及传统材料的日益匮乏,为抗菌材料的研究提供了社会背景和生态意义。复合纳米TiO2这类生态环保抗菌材料是当前研究的热点之一。它不仅可以解决TiO2的分散与固定化问题,而且通过载体的吸附作用可以在催化剂表面区域形成反应物的富集,促进传质过程,从而提高光催化反应的效率。本文的研究内容主要包括三个部分:(1)金属掺杂玻璃基纳米TiO2膜的制备、合成、表征及评价;(2)通过含
学位