【摘 要】
:
高能量密度的锂金属电池被看作是下一代候选储能电池体系之一。但使用传统液态电解质的锂金属电池存在着不可忽视的安全性问题,限制了锂金属电池的发展应用。将液态电解质替换成安全性更高的固态电解质能够有效改善锂金属电池的安全性问题。然而目前主流的有机和无机固态电解质各自存在严重缺陷:有机固态电解质电导率低,无法实现离子的快速传导;无机固态电解质界面接触不良、稳定性差,无法满足实际应用需要。作为近年来备受关注
论文部分内容阅读
高能量密度的锂金属电池被看作是下一代候选储能电池体系之一。但使用传统液态电解质的锂金属电池存在着不可忽视的安全性问题,限制了锂金属电池的发展应用。将液态电解质替换成安全性更高的固态电解质能够有效改善锂金属电池的安全性问题。然而目前主流的有机和无机固态电解质各自存在严重缺陷:有机固态电解质电导率低,无法实现离子的快速传导;无机固态电解质界面接触不良、稳定性差,无法满足实际应用需要。作为近年来备受关注的多孔材料,金属-有机框架材料(MOFs)因其电子绝缘性和高度可设计性等特征,具有成为高性能固态电解质的可能。本论文以配体和客体分子作为导离子功能基元在MOFs内进行功能基元的序构设计,使MOFs中的孔道转变为能够使离子快速传输的通道,并系统的研究其在固态锂金属电池中的适用性。第一,利用MOFs框架结构有序性,通过使用带卤素的配体,实现卤素基团在MOFs框架上的有序排列。DFT计算和实验结果相结合证明序构的卤素基团能够改变MOFs孔道电子分布,使电子在孔壁处富集,从而在孔道内形成电负性环境促进锂离子的传导。同时,卤素基团还能够调控固体电解质中间相(SEI)的组成,参与形成致密稳定的SEI层,优化锂离子的沉积。使用此双功能卤素序构MOFs制备的固态电解质在多种锂金属电池体系中均展示出极高的倍率性能和优异循环稳定性,甚至在使用有限锂组装的锂金属全电池中也有较好的表现。第二,利用MOFs的开放金属位点来有序配位锚定具有高导离子性能的离子液体,制备具有良好导离子能力的MOF固态离子导体。其中,被有序配位锚定的离子液体在MOFs孔道内形成高效导离子网络促进离子的传导,达到与MOFs负载离子液体离子导体相同水平的离子电导率。并且与负载离子液体相比,这一离子液体序构化手段极大的提升了离子迁移数,实现了单离子传导。使用这一材料组装的全固态锂金属电池也表现出较好的性能,拥有较高的放电容量的同时还具有较好的容量保持率,并且在0.5C下能够稳定循环数百圈。
其他文献
由于锂金属具备高的理论比容量(3860 m Ah g-1)、低的工作电位(-3.040 V)以及低的密度(0.59 g cm-3),以锂金属作为负极并搭配各类正极材料的锂金属电池成为当下解决动力电池里程焦虑的重要研究对象。当前锂金属电池研究的主要问题在于如何在保证其安全性的前提下进一步提升锂金属电池的能量密度和循环寿命。锂金属电池的安全性主要可以通过开发固态电解质(SEs)制备固态锂金属电池实现,
我国的气候类型丰富,为减少建筑在使用过程中所使用的化石能源,应因地制宜选取适用的被动式设计策略。基于焓湿图的建筑气候分析方法可以帮助建筑师快速的找到适用于当地气候的设计模式,该分析方法的准确性受到其内置热舒适模型与建筑模型的影响,而现有的建筑生物气候分析图对我国不同地区的人体热适应性考虑不充分;我国未来主要新增建筑将为城镇居住建筑,与建筑生物气候图种内置的小型单体建筑不相符。同时我国目前被动式设计
高熵合金是在含有多个主元素的基础上设计并开发出来的一种新型合金。这种复杂的元素组成不似传统合金一样形成复杂的相结构,其相结构往往是简单的面心立方(FCC)或体心立方(BCC);且该新型合金一般兼具较高的强硬度和耐磨等优异的性能。然而,高熵合金也存在强塑不匹配的问题,即单相BCC合金具有较高的强硬度和较低的塑性;而单相FCC合金则相反,具有较优异的塑性和较低的强硬度,这严重制约了其在工业领域的应用。
高熵合金具有优异的力学性能、耐磨性、耐蚀性以及耐高温性能,在极端工况下具有巨大的应用潜力。激光熔覆技术凭借能量密度高、稀释率低、快热快冷、界面冶金结合等特性,成为制备高熵合金的主要方法之一。但是单相面心立方(FCC)或体心立方(BCC)的高熵合金,由于强度-塑性不匹配而导致综合性能不佳,限制其工程应用。硬质颗粒增强FCC结构高熵合金是解决强度-塑性不匹配的重要途径,成为国内外研究热点之一。本文系统
钠离子电池作为最具潜力的新一代储能器件,其优势在于成本低廉、安全性高、充电快,但由于Na+离子半径大,在电极材料中的脱嵌阻力大,导致钠离子电池容量和循环性能都不及锂离子电池,因此,研发具有优异电化学性能的钠离子电池电极材料意义重大。MoS2作为一种典型的层状结构金属硫化物,十分适合金属离子的脱嵌。本文,基于生物质,通过水热法和常温包覆等手段,构筑了核壳结构的生物碳与MoS2复合材料,并系统研究其电
在铝合金摩擦搅拌焊接(FSW)过程中,由于材料在两侧流动方式不同,焊缝各区组织结构产生差异,焊缝甚至材料整体会产生残余应力。对于异种铝合金的FSW焊接,由于两侧材料的成分和物理性能不同,组织结构的差异会更为明显且更易产生较大的残余应力,而残余应力的大小和分布直接影响着工件的耐腐蚀性能,限制了铝合金FSW焊接构件的进一步应用。因此,研究异种铝合金板材FSW焊接残余应力分布以及残余应力对腐蚀性能的影响
近年来随着居民生活水平的提高,我国餐厨垃圾年产量也随之增加。厌氧发酵技术目前被认为是处理餐厨垃圾的最佳方式,但是餐厨垃圾中含油率较高,厌氧发酵过程产生的长链脂肪酸(Long chain fatty acids,LCFAs)对厌氧微生物具有一定的抑制作用,但其积累特性及对厌氧发酵过程的影响仍有待进一步探究。基于此,本研究考察了不同有机负荷(Organic loading rate,OLR)下餐厨垃圾
随着经济全球化的不断发展,化石能源的枯竭和由此产生的环境污染正越发严峻,开发生物质等可再生资源已成为当务之急。通过将纤维素酶固定在各种载体上的技术被认为是一种水解纤维素生产葡萄糖的绿色方法,在这种方法中,高效的催化活性和良好的可重复利用性甚至在恶劣的反应条件下依然可以同时得到满足;同时生物炭作为一类具有高比表面积和多孔结构的新型载体,其易制备和可磁化的特性赋予了其在固载酶领域的独特优势。因此本学位
忆阻器(Memristor)又称为记忆电阻,其名称由记忆(Memory)和电阻(Resistor)词汇组合而来。忆阻器是一种无源电路基本元件,可以使得电荷量跟磁通量这两个物理量建立联系。忆阻器跟电阻元件的物理量纲是一致的,但是忆阻器件的阻值是由流经它自身的电荷量决定的,这也是它与普通电阻元件最大的区别之处。对于忆阻器,通过测量器件伏安特性计算出其阻值,就能知道流经器件的电荷量大小,从而具备储存记忆
远场类谐和地震动和近场脉冲型地震动是两类低频成分丰富的长周期地震动,容易导致自振周期较长的超高层结构发生严重的破坏。已有研究多针对长周期地震动作用下结构的动力响应和损伤机理,但长周期地震动作用下结构减震控制问题的研究相对较少。本文以超高层结构中广泛应用的SRC框架-RC核心筒混合结构为研究对象,从长周期地震动特性、长周期地震动输入方法、长周期地震动作用下屈曲约束支撑和黏滞阻尼器对SRC框架-RC核