论文部分内容阅读
当今社会,星载、弹载系统中微波负载及器件的小型化和集成化是目前该领域的主要发展方向。在铁氧体基片上通过光刻工艺和沉积薄膜技术来实现微波器件的集成化成为当前应用牵引的研究热点。本论文基于这一背景,研究了基于镍锌铁氧体基上制备Ta N薄膜并通过工艺调整、理论设计和器件制作来研究薄膜与集成器件的性能,并且通过在镍锌铁氧体基片上设计涂覆CaO-Al2O3-SiO2玻璃釉来对基片进行表面处理,提高薄膜负载的功率密度,最后设计制备了微波集成隔离器,并对其性能进行了测试。第一,采用直流反应磁控溅射技术在镍锌铁氧体基片上制备了TaN薄膜。通过研究溅射时间、氮气分压等工艺条件变化对TaN薄膜相结构、方块电阻、电阻温度系数等参数的影响,确定了最佳工艺参数范围。背底真空度为7.8×10-5-8.85×10-5 Pa,溅射气压0.6-0.8 Pa,溅射Ar流量为50 sccm,N2流量为2 sccm,溅射功率45-50 W,溅射时间1000 s,所得的薄膜方阻为42-50Ω/□,电阻温度系数TCR为50-61 ppm/℃,厚度约为350 nm。第二,镍锌铁氧体基片表面大量孔洞的存在会影响TaN薄膜负载的散热性能,不利于负载功率密度的提高。为改善这一性能,实验设计研究了CaO-Al2O3-SiO2(CAS)玻璃釉,通过丝网印刷的方式在基片上涂覆一层玻璃釉,可有效改善基片表面平整性和散热性能,有利于负载功率密度的提高。第三,利用HFSS软件设计仿真和优化了尺寸为10 mm×10 mm×0.5 mm的TaN薄膜微波负载的模型,负载在DC-20 GHz频率范围内电压驻波比VSWR小于1.2,然后在镍锌铁氧体基片上制备了Ta N薄膜负载。经测试,薄膜微波负载在DC-20 GHz频率范围内VSWR均小于1.5,回波损耗S11小于-10 dB,阻抗变化为42Ω-58Ω,功率密度仅为1 W/mm2左右。为提高微波负载的功率密度,实验仿真制作了基于玻璃釉涂覆的镍锌铁氧体基片的TaN薄膜微波负载,测试显示负载功率密度提高到了2.5 W/mm2。第四,在TaN薄膜微波负载的基础上设计仿真了微带集成隔离器,在X波段8 GHz-12 GHz范围内仿真的隔离器回波损耗和隔离度均高于-20 dB,插入损耗低于-0.8 dB。实验制作的隔离器在X波段内回波损耗和隔离度均小于低于-14 dB,插入损耗低于–4 dB。制作的隔离器基本实现了隔离性能和集成化目标。