论文部分内容阅读
涡轮泵是液体火箭发动机的重要组成部件,其直接决定着火箭发动机能否安全运行。其中,液体密封是控制涡轮泵泄漏的关键,对于提高涡轮泵效率及降低转子振动具有重要意义。考虑到密封部件处于高压和低温并存的恶劣工况下,结构简单且不易发生变形的环形间隙密封常被用作控制液氧工质泄漏的主要密封部件。本文以液氧涡轮泵离心轮凸肩处的间隙密封为研究对象,提出一种在密封表面添加织构的新型液体密封,研究表面织构间隙密封的泄漏特性及密封-转子系统的动力学特性。首先利用CFD方法研究密封表面不同织构形貌及分布对泄漏特性的影响规律,以降低密封泄漏量为设计目标,得到较优化的表面织构间隙密封结构。并应用本文提出的密封泄漏特性及动力学特性试验方法,试验验证CFD方法计算准确性。进而针对表面织构间隙密封泄漏特性及动力学特性研究,提出一种CFD-Bulk flow混合计算方法。该方法首先对密封间隙内流动方程简化,构建变间隙高度Bulk flow模型;再通过CFD稳态流场仿真结果修正模型的入口压强损失系数及壁面阻力系数;最后应用有限元法对流场求解。与应用CFD动网格技术仿真对比,该方法计算可靠且具有高计算效率的优势。应用此方法,本文获得表面织构间隙密封在不同密封间隙、密封长度、压差、转速以及偏心率条件下的泄漏量和动力学特性系数变化规律;并对比无织构间隙密封,均得到泄漏量和刚度系数减小、阻尼系数增大的仿真结果。最终针对系统动力学特性研究,建立考虑部分轴段材料属性等效、轮盘结构简化和支承结构下的涡轮泵密封-转子系统有限元模型,自编程仿真计算临界转速及振型。并且提出一种考虑密封激励力与转子振动位移耦合的计算方法,仿真得到不平衡激励下轴端螺母、密封及泵端轴承处的振动响应。得到密封间隙减小及密封长度增大有利于降低涡轮泵转子振动水平的仿真结果。研究表明,相较于无织构间隙密封,本文所提出的表面织构间隙密封在泄漏量控制和减振方面均得到良好的效果,为液体火箭发动机涡轮泵性能的提升提供了技术支持。