论文部分内容阅读
装配式钢筋混凝土柱-钢梁(RCS)混合结构综合了钢结构和钢筋混凝土结构各自优势,充分发挥材料性能,是一种高效经济的结构形式,在装配式建筑领域中具有广泛的应用前景。本文提出了一种新型的离心预制混凝土管组合方柱-钢梁(CFCPSTS)装配式混合框架体系,采用试验研究、数值模拟和理论分析相结合的方法,展开了对离心预制混凝土管组合方柱及梁柱节点受力性能与设计方法的研究。主要研究工作和成果如下:
(1)进行了8个离心预制混凝土管空心方柱和12个离心预制混凝土管组合方柱的受剪性能试验,对其破坏模式、裂缝开展规律、承载能力、延性和变形性能进行了分析;通过对比分析离心预制混凝土管空心方柱和组合方柱的受力性能,揭示了离心预制混凝土管组合方柱的受剪机理。研究结果表明,离心预制混凝土管空心方柱和离心预制混凝土管组合方柱的破坏模式均为剪压破坏;芯部混凝土与外部预制管壁接触界面粘结完好,未出现滑移现象,离心预制混凝土管组合方柱表现出较好的整体协同工作性能;相比离心预制混凝土管空心方柱,离心预制混凝土管组合方柱中芯部混凝土的存在延缓了柱损伤发展,既提高了承载力,又显著改善了延性性能和变形性能,其受剪性能有显著提高。
(2)基于桁架-拱模型理论,分别推导了离心预制混凝土管空心方柱和离心预制混凝土管组合方柱的受剪承载力计算公式,公式计算值与试验值吻合较好。因此,对发生剪压破坏模式的离心预制混凝土管空心方柱或离心预制混凝土管组合方柱,可采用本文所提出的公式对其极限受剪承载力进行计算。此外,在使用本文所提出的公式进行离心预制混凝土管空心方柱及组合方柱受剪承载力设计时,为确保柱裂缝宽度满足正常使用极限状态下《混凝土结构设计规范》对裂缝宽度限值的要求,建议高强箍筋强度取值不超过500MPa(对应箍筋强度设计值不超过415MPa)。
(3)进行了7个离心预制混凝土管组合方柱的抗震性能试验,对其破坏模式、滞回性能、承载能力、延性、刚度退化及耗能能力进行了分析;通过累积损伤模型研究了离心预制混凝土管组合方柱的损伤演化过程,探讨了该类型组合柱塑性铰长度的计算方法。研究结果表明,离心预制混凝土管组合方柱的破坏模式为受压弯曲破坏,芯部混凝土与外部预制管壁接触界面粘结完好,未出现滑移现象,表现出较好的整体协同工作性能;高强箍筋对内部混凝土有较好的约束作用,离心预制混凝土管组合方柱处于中等延性至高延性水平等级,表现出良好的延性性能。
(4)基于极限强度理论推导了离心预制混凝土管组合方柱的正截面承载力简化计算公式,与试验结果对比表明,计算值与试验值吻合较好。此外,利用试验拟合法,建立了离心预制混凝土管组合方柱的三折线骨架曲线模型和恢复力模型,所建立的模型可较好地反映离心预制混凝土管组合方柱在反复荷载作用下的滞回特性。
(5)进行了6个离心预制混凝土管组合方柱-钢梁节点的抗震性能试验,对其破坏模式、滞回性能、承载能力、耗能能力和变形组成进行了分析,揭示了节点的受剪机理。研究结果表明,离心预制混凝土管组合方柱-钢梁节点的破坏模式为节点域破坏,包括节点域剪切破坏和节点上下柱端混凝土的局部碎裂破坏,其中节点域剪切破坏是导致节点最终失效的主要原因。影响节点承载力的主要因素是钢套箍厚度、芯部混凝土强度和预制管混凝土强度,轴压力和钢套箍延伸高度对承载力的影响较小。增加钢套箍延伸高度可改善节点的延性性能,并能有效减小节点域的刚体转动。
(6)基于叠加理论建立了离心预制混凝土管组合方柱-钢梁节点的受剪承载力计算公式,与试验结果对比表明,计算值与试验值吻合较好。基于本文的研究成果,对CFCPSTS装配式混合框架结构的设计提出了具体建议,为实际工程应用提供了设计依据。
(1)进行了8个离心预制混凝土管空心方柱和12个离心预制混凝土管组合方柱的受剪性能试验,对其破坏模式、裂缝开展规律、承载能力、延性和变形性能进行了分析;通过对比分析离心预制混凝土管空心方柱和组合方柱的受力性能,揭示了离心预制混凝土管组合方柱的受剪机理。研究结果表明,离心预制混凝土管空心方柱和离心预制混凝土管组合方柱的破坏模式均为剪压破坏;芯部混凝土与外部预制管壁接触界面粘结完好,未出现滑移现象,离心预制混凝土管组合方柱表现出较好的整体协同工作性能;相比离心预制混凝土管空心方柱,离心预制混凝土管组合方柱中芯部混凝土的存在延缓了柱损伤发展,既提高了承载力,又显著改善了延性性能和变形性能,其受剪性能有显著提高。
(2)基于桁架-拱模型理论,分别推导了离心预制混凝土管空心方柱和离心预制混凝土管组合方柱的受剪承载力计算公式,公式计算值与试验值吻合较好。因此,对发生剪压破坏模式的离心预制混凝土管空心方柱或离心预制混凝土管组合方柱,可采用本文所提出的公式对其极限受剪承载力进行计算。此外,在使用本文所提出的公式进行离心预制混凝土管空心方柱及组合方柱受剪承载力设计时,为确保柱裂缝宽度满足正常使用极限状态下《混凝土结构设计规范》对裂缝宽度限值的要求,建议高强箍筋强度取值不超过500MPa(对应箍筋强度设计值不超过415MPa)。
(3)进行了7个离心预制混凝土管组合方柱的抗震性能试验,对其破坏模式、滞回性能、承载能力、延性、刚度退化及耗能能力进行了分析;通过累积损伤模型研究了离心预制混凝土管组合方柱的损伤演化过程,探讨了该类型组合柱塑性铰长度的计算方法。研究结果表明,离心预制混凝土管组合方柱的破坏模式为受压弯曲破坏,芯部混凝土与外部预制管壁接触界面粘结完好,未出现滑移现象,表现出较好的整体协同工作性能;高强箍筋对内部混凝土有较好的约束作用,离心预制混凝土管组合方柱处于中等延性至高延性水平等级,表现出良好的延性性能。
(4)基于极限强度理论推导了离心预制混凝土管组合方柱的正截面承载力简化计算公式,与试验结果对比表明,计算值与试验值吻合较好。此外,利用试验拟合法,建立了离心预制混凝土管组合方柱的三折线骨架曲线模型和恢复力模型,所建立的模型可较好地反映离心预制混凝土管组合方柱在反复荷载作用下的滞回特性。
(5)进行了6个离心预制混凝土管组合方柱-钢梁节点的抗震性能试验,对其破坏模式、滞回性能、承载能力、耗能能力和变形组成进行了分析,揭示了节点的受剪机理。研究结果表明,离心预制混凝土管组合方柱-钢梁节点的破坏模式为节点域破坏,包括节点域剪切破坏和节点上下柱端混凝土的局部碎裂破坏,其中节点域剪切破坏是导致节点最终失效的主要原因。影响节点承载力的主要因素是钢套箍厚度、芯部混凝土强度和预制管混凝土强度,轴压力和钢套箍延伸高度对承载力的影响较小。增加钢套箍延伸高度可改善节点的延性性能,并能有效减小节点域的刚体转动。
(6)基于叠加理论建立了离心预制混凝土管组合方柱-钢梁节点的受剪承载力计算公式,与试验结果对比表明,计算值与试验值吻合较好。基于本文的研究成果,对CFCPSTS装配式混合框架结构的设计提出了具体建议,为实际工程应用提供了设计依据。