论文部分内容阅读
为了解决人类社会发展带来的能源需求和环境恶化的世界性问题,新能源材料的探索已经成为全球广泛关注的热点。V2O5材料因其独特的层状结构,不仅可以作为锂离子二次电池的正极材料,而且还是少数几种有望应用于镁电池正极的活性材料。因此,V2O5是一类重要的新能源材料,系统研究V2O5材料的制备、结构及其特性有着重要的意义。本论文通过磁控反应溅射法制备了α-V2O5和β-V2O5薄膜,利用热蒸发化学气相沉积获得了形貌多样的V2O5纳米材料,采用水热法得到了VOx纳米管(VOx-NTs),并使用各种表征手段研究了V2O5薄膜与纳米材料的形貌、结构与形成机理。(1)V2O5薄膜的溅射法制备及其循环伏安特性研究研究了实验条件对α-V2O5薄膜结构的影响。结果表明,在氧气分压较大的环境下,容易得到层状结构较完整的α-V2O5薄膜。当退火温度过高时(大于550℃),α-V2O5结构中的钒氧双键V=O键将容易断裂,产生氧空位,使得α-V2O5(001)晶面坍塌。适当的沉积温度有利于α-V2O5薄膜结晶。系统的研究了溅射制备β-V2O5薄膜及其形成机理,这方面的研究目前国内外未见报道。在550℃沉积温度(40%的氧气分压)的条件下,得到了具有β-V2O5结构的薄膜。实验结果表明,氧气分压和沉积温度是β-V2O5薄膜形成的必要因素。溅射过程中,较高的沉积温度不仅导致钒氧原子具有较高的能量,而且抑制了α-V2O5结构的形成。在沉积温度较高,氧气分压较大的情况下,不易生成低价态的钒氧化合物,而是有利于β-V2O5薄膜的形成。在合适的沉积温度(500℃)下可以得到α-和β-V2O5两相共存的薄膜,经过退火后α相将转变为β相。在单晶硅、石英、玻璃和ITO衬底上均可以生长β-V2O5薄膜。报道了β-V2O5薄膜的循环伏安特性,这对探索β-V2O5薄膜的电化学应用有着积极的意义。在ITO上分别制备了α-和β-V2O5薄膜,并对其循环伏安性质进行研究。结果表明,α-V2O5薄膜具有电化学可逆性,Li+和Mg2+均能在α-和β-V2O5薄膜中可逆的嵌入/脱嵌。在没有水存在的Mg(ClO4)2/PC溶液中,Mg2+在V2O5中的循环性能不稳定,这可能是Mg2+的电荷密度较大,嵌入过程中,使V2O5的结构发生不可逆畸变。(2)不同形貌V2O5纳米材料的热蒸发化学气相沉积(CVD)制备及其生长机理在低真空(约1Torr)650℃下,直接加热VO(acac)2粉末制备了V2O5纳米片。这是一种简单有效制备V2O5纳米片的方法。加热VO(acac)2粉末,在不同温度区域得到了各种形貌的VOx材料,包括V2O5纳米棒和VOx微米球。不同生长区域中温度的差异,使得钒氧化合物中V5+/V4+的含量比例有所不同,最终引起VOx形貌的变化。将蒸发源VO(acac)2粉末和V2O5的生长衬底分别安置于低温区和高温区,得到了V2O5纳米线和V2O5纳米球。我们提出了以金属有机物为蒸发源的化学气相生长各种纳米材料的机理。V2O5纳米线和纳米球的形成属于两个不同的形成机理:前者是由VO(acac)2分解后生成的各种钒氧离子团成核、生长所形成;后者是由源蒸汽在传输过程中直接化合生成。(3)VOx纳米管(VOx-NTs)的水热法制备及其循环伏安特性。以V2O5粉末、H2O2溶液和十二胺乙醇溶液为原料制备纳米管,并研究了pH值对纳米管形成的影响。结果表明,强酸条件下,得到了V6O13结构的微米片和微米带。碱性条件下合成了VOx-NTs。水热反应过程中,前驱液的酸碱性,一方面与V2O5·nH2O溶胶的形成密切相关,另一方面对十二胺的质子化产生影响。强酸性条件阻碍了纳米管的形成,而在碱性条件下会促进V2O5层状结构的生成,有利于纳米管的生长。延长V2O5·nH2O与十二胺乙醇溶液的搅拌时间,将V2O5·nH2O与十二胺的摩尔比增大到1:1,提高了纳米管的产率。将V2O5粉末、去离子水和十二胺乙醇溶液(V2O5与十二胺摩尔比为1:1)混合制备V2O5·nH2O/十二胺悬浊液,制备出了质量较好的VOx-NTs。在pH=8和10时,得到的纳米管长度达到几微米。循环伏安测试结果表明,相对于片状的VOx,VOx-NTs表现出较好的Li+嵌入/脱嵌性能。