论文部分内容阅读
SiC单晶作为第三代半导体材料,因具有优良的特性,而被广泛应用于各种元器件的衬底材料,但由于SiC单晶片硬度极高,属于典型难加工的脆硬性材料,研究SiC单晶片的精密超精密加工机理和损伤机理具有非常重要的意义。因此,为了揭示SiC单晶片的损伤变形机理,通过微纳米压/划痕技术研究了SiC单晶片的压/划痕形貌特征及残余应力变化情况,可为SiC单晶片精密超精密研磨加工损伤机理的研究提供理论支持。本文利用三维表面测量系统与激光拉曼光谱仪研究了不同研磨加工条件下SiC晶片表面粗糙度及残余应力分布情况。在相同加工条件下固结磨料研磨后的SiC晶片表面粗糙度优于游离磨料;固结磨料研磨加工后的表面残余拉压应力变化幅度相对比较均匀,而游离磨料研加工磨后的表面残余拉压应力变化幅度相对较大;当磨粒粒度较小时,固结磨料研磨SiC晶片的残余压应力较小,可获得较好的晶片表面。利用微纳米力学测试系统对6H-SiC单晶片(0001)晶面进行压痕试验,根据压痕试验结果得到了载荷-位移曲线、载荷-硬度曲线以及载荷-弹性模量曲线;分析了产生压痕尺寸效应现象的原因,并结合压痕形貌特征分析了压痕周边区域残余应力分布情况。SiC单晶片的硬度与弹性模量随着加载力的增加不断减小,最后趋于稳定状态;加载力为150mN的压痕周边区域存在残余拉压应力,且拉压应力分布不均匀。通过划痕试验结果得到了SiC单晶片不同晶向的摩擦系数变化曲线,并且结合划痕形貌特征分析了划痕在动载荷加载作用下的脆塑性转变机制以及静载荷作用下沿[1?21?0]晶向划痕的残余应力分布情况。6H-SiC单晶片沿不同晶向划擦后的SiC单晶片摩擦系数基本稳定在0.185~0.240,沿[1?21?0]晶向随载荷的增加单晶片从塑性去除逐渐转变为脆性去除,划痕中心的凹陷与两侧堆积现象逐渐加剧;当划痕加载力小于10.7N时,材料处于塑性去除模式,残余应力主要呈现残余压应力,局部有较小的残余拉应力;当划痕加载力大于10.7N时,材料从塑性去除向脆性去除转变,到14.8N时转变为脆性去除模式,划痕底部残余拉应力逐渐增大,以残余拉应力为主,但在划痕两侧堆积处呈现较大残余压应力。