论文部分内容阅读
硫杂环丙烷由于其独特的结构,作为三元小环,自身较大的环张力使得其很容易作为亲电试剂被其他亲核试剂进攻开环,得到硫醇、硫醚等化合物;并且,作为杂原子三元小环,由于硫原子的存在又使得硫杂环丙烷可以作为亲电试剂参与有机化学反应。这样的独特性质使得硫杂环丙烷在有机合成中可以作为重要的反应中间体。而硫杂环丙烷自身与氧杂环丙烷、氮杂环丙烷相似,同样可以作为天然产物分子或者药物活性分子中的重要骨架结构。正是基于硫杂环丙烷的重要性,本文将围绕硫杂环丙烷展开一系列的研究,并着眼于硫杂环丙烷的扩环以及开环重排反应。(1)基于硫杂环丙烷自身环张力所带来的亲电性质,在强碱NaH的存在下,由三甲基碘化亚砜原位生成的二甲基亚砜甲基硫叶立德作为亲核试剂,与硫杂环丙烷反应得到一系列扩环产物硫杂环丁烷。在该过程中硫叶立德作为亲核试剂对硫杂环丙烷发生碱式开环,得到开环产物硫醇负离子,其很快发生分子内亲核取代,离去一分子二甲基亚砜并得到扩环产物。该方法操作简便,充分利用硫杂环丙烷的环张力实现了常规方法不易合成的2-取代或2,2-双取代的硫杂环丁烷产物的高效制备。(2)利用简单的二甲基亚砜甲基硫叶立德可以实现硫杂环丁烷的扩环制备,但是仅仅可以引入亚甲基,为了增加扩环产物官能团的丰富性,考虑使用β羰基取代的硫叶立德与硫杂环丙烷反应。但是利用类似的亲核类型反应却难以实现扩环产物的合成。推测是因为羰基的吸电子共轭作用导致硫叶立德的亲核性下降所致。转变思路,利用极性转化的策略将原先作为亲核试剂的硫叶立德在金属作用下转为亲电试剂,同时考虑到硫杂环丙烷所具有的亲核性能,将两者相匹配,最终可以很好地实现了官能团化硫杂环丁烷的扩环制备。(3)为了进一步探究β羰基取代的硫叶立德的亲核性能,使之与缺电子的炔酯反应,能够以中等至较高的产率得到多取代的呋喃衍生物。二甲基酰基甲基硫叶立德与丁炔二酸烷基酯的反应历经迈克尔加成,分子内的亲核加成,4π电开环,分子内的迈克尔加成与消除等过程。该方法也可以扩展到呋喃-3-甲酸,-2,4-二甲酸和-2,3,4-三甲酸烷基酯的合成。该方法提供了一条直接简洁的策略,从安全易得的二甲基酰甲基硫叶立德与各种炔酸烷基酯出发,合成了官能团多样的多取代呋喃化合物。(4)除了探究硫叶立德的亲核性能,对硫杂环丙烷的亲核性能也做了深入的研究。由硫杂环丙烷与二芳基碘鎓盐在叔丁醇钾四氢呋喃溶液的存在下可以制备得到多种乙烯基芳基硫醚。反应过程中二芳基碘鎓盐在叔丁醇钾作用下可以原位生成活泼的亲电试剂芳炔中间体,其容易被作为亲核试剂的硫杂环丙烷捕获,并生成硫杂环丙烷鎓中间体,随后很快发生氢转移以及开环重排得到硫醚产物。该研究是对硫杂环丙烷作为亲核试剂反应的很好补充同时也为合成乙烯基芳基硫醚与对应的砜提供了很好的途径。(5)为了进一步拓宽硫杂环丙烷作为亲电试剂参与的反应,以及更加深入地研究硫杂环丙烷的反应性质。在微波辅助下二甲基亚砜溶剂中,芳氧甲基硫杂环丙烷与N-溴代丁二酰亚胺(NBS)反应得到了一类重要的(2,3-二氢苯并[6][1,4]氧硫杂环己-3-基)甲醇化合物。首先芳氧甲基环硫乙烷与NBS生成1-溴-2-(芳氧甲基)硫烷-1-鎓离子,随后发生分子内的芳香亲电取代并被体系中大量存在的二甲基亚砜亲核开环,最后水解得到最终产物。