基于神经网络的人群密度估计和人流量统计研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:htloveqy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来随着我国经济的不断发展和医疗水平的不断提高,我国的人口数目呈现快速的增长趋势。截至2017年末,中国大陆的人口数量已经达到十三亿九千万人,特别是一线城市,人群密集度达到一种极高的水平。另一方面,人们消费水平的不断提高也使得人们参加演唱会,观光游览,大型比赛等集会的次数更加频繁。人群密集度过高导致的踩踏事件和恐怖事件发生的次数越来越多。这些事件时时警醒人们,同时也显现出对人群密度进行估计和人流量进行统计有着十分重要的现实意义,它能够帮助人们计算出人群密度和人流量从而预防不必要的灾难的发生。据此,本文的研究重点是通过自动化的方法,利用计算机视觉对特殊场合下的人群密度和人流量进行研究。
  基于神经网络的深度学习方法近年来随着计算机性能的飞速提升也取得了不小的进步,深度学习在各种各样的比赛中取得了令人可喜的成绩。深度学习不同于传统的算法需要人工设计特征提取器,其核心是通过多层网络来自动学习图像或者文本的特征信息。众多学者的研究表明,通过神经网络学习出来的特征相比于传统的方法提取出来的特征更加具有泛化性。并且基于神经网络的方法在计算机视觉,自然语音处理,语音识别等领域取得的准确率要远远超过传统的方法。由此,本文在借鉴并总结前人的工作的基础上,将神经网络引入人群密度估计任务和人流量统计任务当中。
  针对人群密度估计问题,本文首先改进一种人群密度估计模型来更好的完成人群密度估计任务。此模型由深层网络和浅层网络组成,其中深层网络是基于VGG-16设计的,浅层网络拥有三层卷积层和三层池化层。其次,本文提取深层网络不同卷积层的特征,将它们和深层网络的输出和浅层网络的输出结合在一起,同时在网络的最后加入两个上卷积层使得最后输出特征图的大小和原始图片的大小相同。再次,本文将人群密度估计任务和人流量统计任务结合起来,使得两个任务在一个神经网络模型中得以实现,通过学习上述人群密度估计模型输出的特征,利用一种特殊的循环神经网络——长短期记忆网络(Long Short-Term Memory, LSTM)来计算一段时间内通过某个地方的人数。本文收集并标记了两个数据集,经过大量的实验研究表明,本文改进得到的人群密度估计模型准确率比前人提出的人群估计模型更高。相比于LSTM的模型,本文改进的融合人群密度估计任务和人流量统计任务的模型的表现也更加优秀。
其他文献
随着经济社会的快速发展,人们日常生活也日渐被污染等问题围绕,加上城市空气质量的下降,雾霾的天气现象频发,以及人们自身对烟草的不节制等种种行为,导致了肺癌成为了对人类健康生命的巨大威胁。而对于癌症的诊断治疗的最有效也是最低成本低负担的办法就是提前做好预防工作,尽早地进行肺癌的诊断与治疗。肺癌的早期表现形态为肺结节,相较于其它人体正常的器官,软组织等并没有明显的差异,其多存在于肺组织的内部,在实际的医
图像超分辨率重构旨在将单帧或多帧序列低分辨率图像转化为一帧富含细节表现力的高分辨率图像。该技术可以突破成像设备的硬件条件制约,仅仅依靠软件算法便能增强图像分辨率,在卫星遥感,视频监控,医学图像,影音娱乐等领域都有着广泛的应用。  近些年来,随着深度学习的发展,基于卷积神经网络的图像超分辨率算法引起了研究者们的广泛关注。由于卷积神经网络有着强大的特征提取能力及非线性映射能力,因此该类算法在图像超分辨
在机器人领域,以谐波减速器作为传动机构的柔性关节机器人因为其轻量,节能,体积小的特点得到了广泛的重视。本文基于奇异摄动方法对柔性关节机器人的在力矩输入有界条件下的轨迹跟踪控制问题展开研究。  首先,在柔性关节机器人的动力学建模方面,本文借助拉格朗日动力学方法并结合Spong所提出的柔性关节假设模型,建立出柔性关节机器人动力学简化模型。由于柔性关节机器人动力学模型复杂,不易直接设计控制律,因此采用了
近十年来机器人技术不论在工业还是在日常生活中都得到了广泛的应用。乒乓球运动是一项需要良好的反应能力与快速判断决策能力的运动,乒乓球机器人不仅能助力乒乓球运动的发展,同时也是研究实时响应机器人技术的理想实验平台。本文以乒乓球机器人为研究平台进行了以下三个方面的研究工作:乒乓球运动的实时图像采集、乒乓球的自动识别与定位、乒乓球飞行轨迹预测及七自由度机械臂击球控制。  对乒乓球运动实时图像采集模块进行了
农业资源是农业生产的基础,如今农业资源量稀缺性日益突出,就空间分布而言,农业资源分散性明显,管理难度大,利用率低,因此农业资源的合理调配对农业发展起着重要作用。资源调配实质上属于定位路径问题,即资源定位配置和车辆路线安排的集成问题,前者决定提供资源的供应点和其所负责的需求点的位置及调配资源的类型和数量,后者解决资源调配的路线安排,解决农业资源调配问题,就要确定合理的调配路线和资源的调配量。为了在获
学位
近些年随着人工智能的不断发展,人们对智能化的依赖越来越高,除了生活中的一些智能产品,工业生产过程中的智能化也有非常大的需求。然而工业智能化过程中复杂的工业环境对机器人以及其控制系统的性能提出了非常高的要求。本文对应用非常广泛的七自由度冗余机械臂的控制系统进行研究,包括进行详细的模型建立和分析,逆运动学求解和轨迹规划。  首先,本文以七自由度机械臂的关节旋转特性为依据建立右手直角坐标系,根据机械臂的
工业装置在生产产品过程中,由于某些部分故障会导致整个设备的停运。甚至当报警不灵敏时,会出现重大安全事故。为保证工业生产的安全,有必要对工业设备进行故障诊断和分析,及时发现安全隐患,并第一时间排除。通过分析传感器系统收集的数据,可以评估设备内部各元件的健康状态。  现有的故障诊断技术,还无法同时满足保证精度和速度的要求。长短期记忆神经网络是一种时间递归神经网络,可以分析输入信息的整体逻辑关系,对于时
学位
随着大数据、物联网等技术的发展,层出不穷的新型服务和不断扩大的网络规模都要求现有网络能快速动态地配置网络资源。但由于现有网络的复杂性和臃肿性,使得这种需求难以被满足。SDN作为下一代网络架构之一,把现有的网络分成了三个相互分离的平面,将网络的控制大权交给了集中式的控制器。其转控分离、集中式控制的特点虽然能够满足对网络设备的快速配置,但同时也带来了单点失效的风险,使它更易成为DDoS攻击的目标。  
近年来,无人机作为一种常见的通过遥控或自动驾驶的飞行设备,被广泛应用于对地震、火灾、洪水等灾害现场的勘察和搜救工作,以及航拍、摄影等娱乐活动。但无人机技术给人类生产生活带来便利的同时,也造成了许多安全隐患,机场、军事区域的无人机黑飞现象更是屡见不鲜,因此需要对无人机进行有效的管控。  无人机的管控不仅需要有关部门出台相应的政策以及对操作者的普及教育,更需要对黑飞无人机采取有效的反制措施,其中通信干
学位
中国自古是纺织大国,在大数据时代背景下,纺织品图像数据正在爆炸式増长,每天需要进行检测的纺织品图像成千上万,这给图像处理领域带来了巨大挑战。加上目前大部分织物检测采用的是效率低、准确率低、主观性强的传统人工方法,因此基于云计算的纺织品瑕疵检测与分类方法的研究对我国纺织业的发展具有十分重要的现实意义。本文研究的内容主要包括纺织品图像预处理算法、纺织品瑕疵检测算法、纺织品瑕疵分类算法以及基于云计算的纺
学位