论文部分内容阅读
气流粉碎技术随着工业生产的发展和对物料要求的提高,越来越受到人们的重视,成为生产过程中极其重要的一种工艺。气流粉碎具有粉碎后所得的产品粒径小,可到达微米级别,粒度分布较窄、纯度高、分散性好等优点,且适用于低熔点物料的粉碎。但在生产应用过程中往往依赖经验调控,还存在对粉碎过程中的工艺参数的控制缺少相关的实验结果和理论指导的问题,导致生产效率较低,同时也会加大生产成本。目前关于流化床气流粉碎过程中不同物料的粉碎机制的研究较少,而经气流粉碎后所得粉体的物性和产品的性能是与其粉碎机理密不可分的。因此,应加强此方面的研究。本学位论文通过用对喷式流化床气流粉碎机对淀粉、秸秆、枸杞、酵母菌等多种物料进行粉碎,探究了气流粉碎对Molerus粉体类型、粉体流动性以及粉体堆积密度与可压缩性的的影响;研究了在气流粉碎过程中气体压力、分级机转速等粉碎参数对于不同类型粉体粒径分布的影响;对不同工况下经气流粉碎后的粉体物料的溶解度、膨胀度、持水能力、脂肪结合能力等粉体性能进行了测量,探究了不同气流粉碎参数对粉体性能的影响。最后,本学位论文还将实验研究与粒数衡算模型相结合,通过对不同操作条件下的实验结果进行计算,得出了不同粒级的选择函数和破碎函数,并对不同粒级颗粒的粉碎机理和粉碎规律进行了分析。研究结果表明,经气流粉碎后,不同粉体物料的Molerus粉体类型变化规律不同。其中,酵母菌粉由MolerusⅠ类粉体转变为MolerusⅢ类粉体,秸秆粉末则显示出从MolerusⅢ类粉体向MolerusⅠ类粉体转变的趋势。气流粉碎对不同粉体的流动性、堆积密度与可压缩性的影响也呈现出相应的差异性。经气流粉碎后得到的颗粒粒径随着系统进气压力的提高而减小。但当进气压力达到一定数值后,粒径变化曲线逐渐趋于平缓,气体压力对粉碎后粒径的影响变的很小,此时进一步提高进气压力对粉碎效果并没有明显改善。与此同时,随着分级机转速的提高,经气流粉碎后得到的颗粒粒径变小,且颗粒粒度分布变窄。此外,粉碎后不同粉体物料的溶解度、膨胀度、持水能力、脂肪结合能力等物性均比粉碎前有所提高,表明气流粉碎可以有效改善粉体各项性能。在气流粉碎时,随着粉体颗粒粒径的增加,Kapur函数的绝对值增大,颗粒的破碎速率增大。这是因为大颗粒的缺陷和裂纹较多,粉碎所需要的能量少,所以破碎速率快。随着进气压力的提高,较粗粒级颗粒的选择函数先增加后减少,而较细颗粒的选择函数变化不大。随着进料量的增大,颗粒的选择函数显示出先增大,后减小的规律。通过对破碎函数的分析得出粉体颗粒在流化床气流粉碎机中主要的破碎方式是剪切和碰撞。具体的,对于较粗的颗粒来说,主要粉碎方式是剪切破碎。而较细的颗粒由于内部缺陷和裂纹少,相对于大颗粒来说更难被粉碎,粉碎需要较多的能量,所以较细的颗粒粉碎方式主要是颗粒间的碰撞破碎。