【摘 要】
:
电磁屏蔽材料在防止电磁波泄漏、污染和干扰等方面具有至关重要的作用。常见的电磁屏蔽材料是通过将具有导电性的填料与基体复合制得的。目前常用的导电填料是通过在微粒表面镀金属制备而成的。为了提高金属与微粒的附着力,需要对微粒表面进行化学修饰。多巴胺修饰法是一种高效、便捷和环境友好的方法,可以提高基体与银的界面粘附力。这是由于多巴胺分子中含有的邻苯二羟基结构赋予了其良好的粘附性。然而,多巴胺价格高,反应时间
论文部分内容阅读
电磁屏蔽材料在防止电磁波泄漏、污染和干扰等方面具有至关重要的作用。常见的电磁屏蔽材料是通过将具有导电性的填料与基体复合制得的。目前常用的导电填料是通过在微粒表面镀金属制备而成的。为了提高金属与微粒的附着力,需要对微粒表面进行化学修饰。多巴胺修饰法是一种高效、便捷和环境友好的方法,可以提高基体与银的界面粘附力。这是由于多巴胺分子中含有的邻苯二羟基结构赋予了其良好的粘附性。然而,多巴胺价格高,反应时间长。邻苯二酚和多胺可以弥补多巴胺的缺陷。这种修饰方法不仅成本低,而且反应速度快,适用于工业化大批量生产。单宁酸来源于天然植物,可以与铁离子(Fe3+)发生螯合反应沉积在基体表面,使表面具有粘附性。本论文采用酚胺修饰方法和单宁酸修饰方法来改性玻璃纤维(GF)表面,通过化学镀制备高导电玻璃纤维/银复合材料。主要工作如下:(1)采用聚(邻苯二酚/多胺)(PCPA)表面改性和化学镀银制备了具有高导电性的镀银玻璃纤维(GF/PCPA/Ag),研究了邻苯二酚与多胺(四乙烯五胺)的摩尔比与导电性的关系。采用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和X射线衍射(XRD)对GF表面的PCPA和GF/PCPA/Ag表面的银层进行了研究,发现GF表面形成了连续、均匀、致密的银层。高温热处理后GF/PCPA/Ag的银层的粗糙度降低,导电性提高,最佳热处理温度及时间分别为500℃和0.5 h。最后,将GF/PCPA/Ag与硅橡胶复合,得到了电导率为150 S/cm的复合材料。这些结果表明GF/PCPA/Ag可作为高导电填料,在电磁屏蔽材料中具有良好的应用前景。(2)利用单宁酸(TA)与铁离子(Fe3+)的快速螯合作用进行GF表面改性,之后再进行化学镀银制备了玻璃纤维/银高导电材料。将制备的玻璃纤维/银高导电材料进行了SEM、EDS、XPS和电导率的表征,证明TA-Fe3+螯合体系和银成功地包覆在GF表面。所制备的玻璃纤维/银高导电材料具有高导电性,纤维的高长径比可以形成搭接效应,降低电磁屏蔽材料的逾渗值,减少填料用量,在电磁屏蔽材料中具有潜在的应用。
其他文献
由于COVID-19病毒在全球的蔓延,主要是由聚丙烯(PP)无纺布制成的一次性口罩由于其更好减缓病毒传播的效果得到了广泛应用。但是这些大量的不可降解的一次性口罩仅通过填埋或焚烧处理,不仅消耗了大量的石油资源,还会对陆地和海洋的生态系统造成巨大的破坏。由于一次性口罩中的细菌和病毒不耐高温的特性,本文采用高温机械共混回收废弃的一次性口罩材料,赋予了回收材料更好的机械性能和额外的阻燃性能,探索了回收利用
聚酰亚胺(PI)纤维具有优异的力学、热学、介电以及耐环境等性能特点,在航空航天、防弹装备以及阻燃隔热等领域有着巨大的应用潜力。在长期服役期间,PI纤维会在载荷的作用下发生蠕变变形,甚至断裂,因此研究PI纤维的蠕变行为是必要的。本文首先通过一系列恒温定载蠕变实验对PI纤维的蠕变行为进行了研究;随后通过时间-温度叠加原理以及阶梯等温法对其长期蠕变行为进行了加速表征,得到PI纤维的长期蠕变行为曲线以及蠕
稳定且高效发光的功能有机硅材料在薄膜传感器等领域表现出广泛的应用前景。目前,构筑荧光有机硅材料最简便的方法就是将荧光分子物理地掺杂在有机硅基体中。然而,小分子荧光物质在基体中物理包埋产生的容易迁移析出的问题严重降低了器件的使用寿命。本论文从上述背景出发,提出了一种荧光物质大分子化的新策略,通过将荧光聚合物加入到有机硅基材中制备了耐迁移且高效固态发光的功能有机硅材料。主要制备了两类常用的聚集诱导淬灭
飞机轮胎生产技术大多被欧美等发达国家垄断,飞机轮胎已经成为中国航空业发展的“卡脖子”问题。飞机轮胎作为飞机起降过程中唯一与地面接触的部件,它很大程度上决定了飞机运行的安全性。由于飞机着陆瞬间特殊苛刻的工况条件,飞机轮胎胎面胶在高速、冲击载荷条件下的摩擦磨损行为和机理十分复杂,亟需澄清。针对上述情况,本论文采用新型磨损磨耗实验机,模拟飞机轮胎着陆时苛刻工况条件,以天然橡胶为基体,探究了不同材料组成对
聚酰亚胺(PI)是一种分子链内含有大量苯环和芳香杂环的化合物。作为一种性能非常优异的新型碳材料前驱体,PI可以用于制备电子散热领域广泛使用的高导热石墨薄膜、碳泡沫等。因此,以PI纤维作为前驱体也有制备高性能碳纤维的潜力。本论文针对课题组前期研究中PI基石墨纤维取向度较低、性能较差的问题,通过采用化学亚胺化和热处理中施加牵伸的方法有效改善和提高了PI基石墨纤维的微观结构和性能。本文主要从以下3个方面
音乐是小学阶段重要的艺术、素质教育课程,能够有效陶冶学生情操,培养学生情感。但是,传统小学音乐教学活动过程中,主要以灌输相关基础理论知识、指导学生视唱等方式为主,不利于学生音乐学习兴趣的培养。因此,本文主要研究小学音乐"大概念"下的大单元教学措施,重新组建课程内容,展现出知识的连接性,旨在引导学生主动探究音乐,培养学生综合素养。
“双减”政策提出要减轻学生的作业负担和培训负担,那么势必要提高学校教育的质量。针对这一要求,各个学校正在积极探索更实用的教学方式。随着现代化信息技术的发展,多媒体在教学活动中的地位越来越突出,它在习作讲评课中的有效运用,使教学方式发生了革命性的变化,充分体现了讲评课的魅力,达到了启智课堂的教学目标,突出了学生的主体地位,同时也促进了教师专业技术水平的发展。
炭基双电层超级电容器(EDLC)较低的电容储量限制着其应用拓展,而电容主要由炭电极的多孔结构和元素组成决定。因此开发具有合理孔分布及适量官能团的多孔炭电极可有效提高EDLC电容。纤维素碳含量高且表面官能团丰富,是一种极具潜力的可再生材料。本课题以滤纸作为纤维素源和炭前体,通过不同技术路线,制备了三种结构各异的纤维素多孔炭并应用于EDLC电极,具体研究成果如下:(1)通过对纤维素滤纸进行冻融再生、C
农药对保护作物和减少产量损失非常重要。但农药的过量使用造成农产品中农药残留超标,威胁人类健康并造成环境污染。因此快速、准确、低成本检测食品中的农药残留具有重要意义。常用的色谱法检测结果可靠,但成本高、前处理过程繁琐、检测时间长。表面增强拉曼技术(SERS)由于灵敏度高、快速无损检测等优点,在农药残留检测方面快速发展。本文以实现二硫代氨基甲酸盐(DTCs)类农药的可靠定性定量分析为目的,选取其中乙撑
金属管道的防腐补强一直是复合材料领域的关注重点,为满足户外施工作业要求,光固化预浸料已成为补强金属管道的理想材料。但是光固化树脂体系的低粘度难以满足热熔两步法预浸料的制备要求,同时有限元仿真分析能够预测和验证复合材料补强金属管道效果。为此本文设计了光/热协同固化环氧树脂体系,改善树脂的涂膜工艺并实现低温固化。利用有限元软件对复合材料补强金属管道建模分析,实现了内压条件下对补强效果的有效验证,并提出