论文部分内容阅读
砌体结构在地震等自然灾害中具有较大的易损性,加固是提高其安全性的有效措施之一。纤维编织网增强混凝土(Textile-Reinforced Concrete,TRC)是一种连续纤维增强水泥基材料,具有良好的力学性能和耐久性能,且与砌体材料具有较好的适应性,在砌体结构加固领域具有广泛的应用前景。本文采用试验、理论和统计分析相结合的方法,从界面、构件两个层次对TRC与砖砌体界面黏结性能、TRC约束砖砌体柱抗压性能以及TRC加固砖砌体墙抗剪性能开展了相关研究,主要的研究内容和获得的研究成果如下:(1)对TRC与砌体界面黏结性能开展了试验研究与理论分析,研究了界面失效机理,分析了界面黏结长度、纤维编织网类型及其表面处理方式对界面承载力和延性系数的影响,确定了相应的界面有效黏结长度。试验研究表明:对于本研究使用的TRC材料,与Basalt-TRC相比,Carbon-TRC与砌体界面具有更好的黏结性能,且碳纤维编织网表面涂层后与基体界面的应力传递机制更为有效,Carbon-TRC与砌体的界面黏结性能得到进一步提升。(2)在界面黏结性能试验研究的基础上,进一步结合收集的测试结果进行了相关的统计分析,明确了TRC与砌体界面的破坏模式及分布情况,对发生界面脱黏和滑移破坏的TRC与砌体界面承载力进行了影响分析,给出了界面承载力的计算公式,为了设计目的,基于概率统计方法进一步获得了界面承载力的设计特征值。针对TRC与砌体界面发生纤维编织网与基体界面的滑移破坏,基于断裂力学方法分析了相应的界面断裂能,并给出了其计算公式。(3)对TRC约束砖砌体柱抗压性能开展了试验研究,分析了纤维编织网类型及层数、额外FRP端部约束以及TRC基体强度等级对约束后砖砌体柱抗压承载力、变形能力和能量耗散的影响,研究了不同TRC约束方式对砖砌体柱抗压性能的增强效果。在试验研究的基础上,进一步结合收集的测试结果研究了TRC约束砖砌体柱抗压强度的计算方法,给出了TRC约束砖砌体柱抗压强度预测模型,为了满足设计要求,基于概率统计方法进一步获得了相应的设计特征值。(4)抗压性能的研究表明:TRC约束砖砌体柱主要发生角部区域的纤维编织网断裂破坏;增加纤维编织网层数会提高TRC约束砖砌体柱的抗压性能,但超过2层后进一步的提升效率不明显;对于本研究使用的TRC材料,相较于Basalt-TRC,Carbon-TRC约束砖砌体柱具有更好的抗压性能,且额外的FRP端部约束会进一步提升抗压承载力和能量耗散,但变形能力有所降低;基体强度等级对TRC约束后砖砌体柱抗压承载力具有一定影响,但对变形能力和能量耗散的影响不明显。与两个已有的抗压强度计算模型比较了模型预测的准确性,本文获得的模型具有较好的适用性和一般性,在此基础上进一步获得的设计特征值可以满足抗压强度的设计要求。(5)对TRC加固砖砌体墙抗剪性能开展了试验研究,利用DIC测试技术分析了TRC加固砖砌体墙的失效过程以及应力传递机制,研究了纤维编织网类型、表面处理方式及层数,TRC加固施加于墙体单侧或双侧以及墙体厚度对加固后砖砌体墙抗剪强度、延性系数以及能量耗散的影响,分析了不同TRC加固方式对砖砌体墙抗剪性能的增强效果。在试验研究的基础上,进一步开展了TRC加固砖砌体墙抗剪承载力计算与设计方法的研究,分析了ACI 549.4R建议方法导致保守性的主要原因,在此基础上实现了抗剪承载力计算与设计方法的优化。(6)抗剪性能的研究表明:TRC加固后砖砌体墙破坏时的整体性得到有效保证,且破坏模式具有延性特征;与未加固砖砌体墙相比,不同TRC加固方式砖砌体墙的抗剪强度、延性系数以及能量耗散均得到显著提升,其中TRC双侧加固的提升效果优于单侧加固;对于本研究使用的TRC材料,与Carbon-TRC加固相比,Basalt-TRC加固砖砌体墙的裂缝控制能力较差,且抗剪性能的提升效果较低;对于墙体厚度较大的24墙,TRC加固后的抗剪性能也获得了显著提升。DIC测试结果显示,Carbon-TRC加固砖砌体墙在受力过程中具有2-3条应力传递路径,而Basalt-TRC加固仅存在1条应力传递路径。与ACI 549.4R建议的方法相比,优化后TRC加固砖砌体墙抗剪承载力设计值的保守性得到有效缓解。