关于抛物型偏微分方程反问题的一种新解法

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ggqllm555
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
反问题是一类由效果表现反求原因原象的数学物理问题。此类问题不仅有着广泛而重要的应用背景,而且其理论还具有鲜明的新颖性和挑战性。迄今,他已发展成为计算数学、应用数学和系统科学等学科交叉的一个热门学科方向。求解数学物理反问题面临的两个本质性的实际困难是:(1)原始数据可能不属于所讨论问题精确解所对应的数据集合;(2)近似解的不稳定性,即:原始资料的小的观测误差会导致近似解与真解的严重偏离。因此,求解数学物理反问题常常是不适定的。这就给求解反问题带来很大的困难,正因为如此,反问题的研究吸引了大量的学者。  本文利用再生核空间给出了求解抛物型方程反系数问题的一种新方法。先作一个变换,把反系数p(t)问题转化为右端反问题r(t)。我们在反系数已知的情况下给出u(t,x)的精确表达式,并构造求解u(t,x)和反系数的迭代序列,可以证明迭代序列收敛到精确解,并且这种方法是稳定的。另外,近似解un(t,x)的误差随n的增加而单调下降,并且这种方法可以很容易推广到多维问题。最后,我们给出了数值算例来说明我们方法的有效性。
其他文献
本文结合西安理工大学科技创新项目《土壤水分运动及溶质运移的数值模拟》,主要针对分层土壤溶质运移的特征有限元数值模拟方法进行了初步研究,取得了如下一些结果:1.建立了
对偶不变性理论是泛函分析空间理论特别是局部凸空间理论的核心内容。在对偶不变性理论中人们通过研究空间上函数的性质来研究空间的性质,而在拓扑线性空间中则试图从X′性质
本文研究变系数非线性耗散波动方程的柯西问题:utt-div(b(x)▽u)+ a(x)ut=|u|p-1 u,x∈Rn,t>0,(0.1)u(0,x)=εu0(x),ut(0,x)=εu1(x),x∈Rn.其中ε>0,系数a(x)∈C0(Rn),b(x)∈C1(Rn)
学位
本文主要讨论了两类相依变量NQD随机序列与NOD随机序列的极限性质,共分为两章. 第一章是有关两两NQD随机列的强收敛性的.两两NQD的概念最早是由Lehmann(1966)提出的,它是一
函数逼近论的研究目的为用简单的可计算函数对一般函数的逼近,并进而考虑这种逼近的程度和如何刻画被逼近函数本身的特性.因此当然希望构造函数的能达到最佳逼近程度的简单函
本文首先介绍了偏微分方程模型在图像处理与分析中应用的主要思想、发展历史和解决问题的基本框架,主要介绍了在图像分割中的应用和水平集方法,总结了偏微分方程图像处理的优点
医学图像可视化是科学计算可视化技术在医学领域的一个重要应用,是当前医学图像处理的研究热点,具有极大的医学研究和临床诊疗应用前景。它主要是通过三维数据场的可视化技术
癌症已经成为严重的影响人类健康的疾病。癌症大部分是可以预防的,但在癌症疾病的初期却是很难被检测和诊断的。于是如何对癌症疾病的初期进行有效的检测成为了提高癌症疾病