【摘 要】
:
石灰套筒竖窑是生产活性石灰所使用的重要窑型之一,近年来随着石灰煅烧技术的发展,石灰窑用耐火材料的服役要求也随之不断提高。刚玉-尖晶石耐火砖由于有着较好的耐磨性和抗热震性等优点,在石灰套筒竖窑中有着很好的应用前景。因此本文为了探索刚玉-尖晶石耐火砖在套筒石灰竖窑中的应用前景,研究了刚玉-尖晶石耐火砖的抗蠕变性和抗渣性。通过扫描电子显微镜、工业CT和X射线衍射等技术手段,对试样的显微结构和物相组成等进
论文部分内容阅读
石灰套筒竖窑是生产活性石灰所使用的重要窑型之一,近年来随着石灰煅烧技术的发展,石灰窑用耐火材料的服役要求也随之不断提高。刚玉-尖晶石耐火砖由于有着较好的耐磨性和抗热震性等优点,在石灰套筒竖窑中有着很好的应用前景。因此本文为了探索刚玉-尖晶石耐火砖在套筒石灰竖窑中的应用前景,研究了刚玉-尖晶石耐火砖的抗蠕变性和抗渣性。通过扫描电子显微镜、工业CT和X射线衍射等技术手段,对试样的显微结构和物相组成等进行了分析研究。本工作首先以烧结刚玉和电熔镁铝尖晶石为原料,制备了刚玉-尖晶石耐火砖试样,研究了尖晶石添加量对试样抗蠕变性的影响机制,在选取合适的尖晶石添加量基础上,进一步研究了添加尖晶石粒度对刚玉-尖晶石耐火砖抗蠕变性的影响机制,最后研究了刚玉-尖晶石砖抗石灰窑窑渣侵蚀机理。研究结果如下:(1)当添加尖晶石粒度大小为3-1 mm时,综合实验温度分别为1300℃、1400℃和1500℃,压力为0.2 MPa,保温50 h的压缩蠕变实验结果,添加质量分数为12 wt.%的刚玉-尖晶石耐火砖试样的抗蠕变性最佳。(2)当添加尖晶石粒度大小为1-0 mm时,综合实验温度分别为1300℃、1400℃和1500℃,压力为0.2 MPa,保温50 h的压缩蠕变实验结果,添加质量分数为20 wt.%的刚玉-尖晶石耐火砖的抗蠕变性最佳。(3)当蠕变实验条件以及尖晶石添加量相同时,添加粒度大小为3-1 mm尖晶石的试样较添加粒度大小为1-0 mm尖晶石的试样有着更好的抗蠕变性。(4)借助工业CT技术定量表征了在蠕变实验前后试样内部孔隙率的变化,发现在蠕变实验后耐火砖内部孔隙率增大,逐层孔隙率的平均值较实验前增大,逐层孔隙率最大值与最小值之间差值减小,逐层孔隙率大小分布趋于平均。(5)石灰窑窑渣和耐火砖中的物相尖晶石和氧化铝可以反应生成具有较高熔点的钙铝黄长石和铝酸钙系列化合物,在渣与耐火砖之间形成了致密的反应层,有效抑制了渣的渗透与侵蚀,赋予了刚玉-尖晶石砖较强的抗渣性。
其他文献
化疗是癌症治疗中使用最广泛且最重要的技术之一。然而,传统的化疗药物多存在高细胞毒性、易引发严重的副作用等缺点,并可能导致多药耐药性的产生,这些问题严重限制了化疗药物在临床治疗效率的提高。因此,迫切需要一系列的科学及临床研究使药物发挥最大程度效用并减少其副作用。近十年来,新型药物载体的理论与实验研究发展突飞猛进,越来越多的功能性药物载体进入临床使用,大幅度改善了药物的生物利用度。然而,目前的药物载体
随着经济的飞速发展,水污染和可饮用水短缺问题已然成为可持续发展的枷锁。如何以绿色、环保的理念解决水污染和可饮用水短缺问题已经成为人们关注的重点。近些年,采用吸附剂吸附水体中的污染物和通过界面蒸发法获得可饮用水的策略因为简单、方便、可持续再生等优势,开始在污水处理领域和海水淡化领域崭露头角并日益成为科研人员的研究重点。目前,吸附法和界面蒸发法进行水处理的研究重心之一是如何利用可再生材料制备新型吸附剂
电催化析氢反应是一种极具发展前景的无污染制氢方法。开发在全pH环境下适用的廉价、高活性、稳定的贵金属催化剂是电催化析氢技术大规模应用的关键。一直以来贵金属Pt被认为是高效电解水制氢催化剂的最佳选择,但由于Pt的稀有性、不稳定性和高昂的成本限制了其广泛应用。钌(Ru)和钯(Pd)因其类铂的析氢特性成为最有望取代铂基催化剂的候选物。金属催化剂容易团聚,需要选用合适的载体进行分散。近年来以生物质为原料的
α-氨基-β-多取代环戊酮衍生物是天然产物的重要骨架,因此合成此类α-氨基-β-多取代环戊酮衍生物具有重要意义。而通过α-羟基亚胺合成α-氨基酮类化合物是最为常见的方法之一。但是,常用的α-羟基亚胺类化合物除少数为原位生成外,大多需要预先制备,步骤繁琐,所以发展在温和条件下更加直接有效合成的α-氨基酮类化合物的方法还是很有必要的。近些年,钯催化硼酸对氰基的加成反应由于其简单高效,原子经济性高等优点
近些年来,能源与环境问题的进一步改善、开发新型可持续能源成为科技工作者的工作重心之一。在多种类型的新能源中,氢能一直备受科研工作者的青睐,因为氢能能量密度高、燃烧产物对环境友好。但如何安全地存储、运输氢气也是困扰氢能商业运作的主要问题。物理方法通常采用加压、液化等手段来实现氢气的存储与运输,但未明显降低潜在的安全风险。因此开发新型化学储氢与产氢体系一直以来都受到人们的青睐。目前化学储氢与产氢的研究
由于单质硫来源丰富、无污染,其作为电池正极具有较高的理论比容量(1675 m Ah·g-1),因此,锂硫电池在储能器件领域展现出较大的发展潜力。然而,单质硫作为锂硫电池的正极,在反应过程中存在着体积膨胀大、导电性差和多硫化物溶解等缺点,这限制了锂硫电池的大规模应用。棉秆来源丰富,廉价易得,通过碳化改性可以应用于锂硫电池的正极材料制备上。本研究使用棉杆作为生物质碳源,分别通过活化剂改性、金属硫化物包
现如今白色污染和能源危机加剧,合成塑料制品遭到限制,研发可生物降解的活性包装成为当前热点。静电纺丝法制备纳米抗菌包装因其温和的连续制备纳米纤维脱颖而出。聚乙烯醇是可生物降解材料,安全性高,但是,单独对聚乙烯醇纺丝的纳米纤维膜功能性单一,机械强度过低,应用范围有限。因此本论文通过在聚乙烯醇纺丝溶液中加入具有抗氧化、抗菌性等功能性分子,制备兼具抗氧化、抗菌的复合纳米纤维膜,延缓食品腐败,扩大其应用范围
锆英砂是生产氧化锆的主要原料,而我国的锆英砂以进口为主,对外依存度很高,我国锆资源储量为50万吨,仅占全球的1%,我国并不是锆资源生产大国,而是锆资源使用大国,面对世界各国对不可再生资源的逐步管控,可以预料到会对我国未来锆资源市场形成新的挑战。在核工业生产高纯锆铪的过程中,会有大量的无铪氧化锆的生产出来,这些无铪氧化锆会被当做工业废料,进行废弃处理,造成了不可再生资源的浪费和环境污染,因此本文从力
随着石油资源匮乏和环境污染日趋严重,高活性加氢脱硫催化剂的开发与应用变得尤为重要。当使用孔结构可调的碳材料作为加氢脱硫催化剂载体时,可利用载体与金属之间弱相互作用获得具有更多边角位活性位点的二类NiMo S活性中心。当在碳载体中加入分子筛后,还可以为催化剂引入B酸中心,进一步提高催化剂反应活性。本文选取高吸水性树脂材料,采用不同方式对分子筛的凝胶与浆液进行吸附,经过离子交换和碳化制备了碳-分子筛材
镁及镁合金具有密度小、比强度高和生物相容性等优点,被广泛应用于各个领域。然而,由于其耐蚀性能差,导致在实际生产和生活中的应用受到限制。化学转化膜处理具有操作简单,成本低的优点,能够有效提高纯镁材料的耐蚀性能,降低腐蚀速率。本文以纯镁材料作为基体,以Sr CO3和H3PO4反应配制基础转化液,通过化学转化在纯镁材料表面制备锶磷转化膜。通过SEM对锶系磷酸盐转化膜的表面微观形貌和结构进行观察分析,转化