含硅/聚氨酯丙烯酸酯的合成、光聚合行为及膜性能研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:guojiaguangdian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文合成了含硅丙烯酸酯、脂环族环氧低聚物及基于倍半硅氧烷的有机-无机杂化聚氨酯丙烯酸酯低聚物,并将其应用于紫外光固化体系中,分别得到自由基固化含硅丙烯酸酯/环氧丙烯酸酯、阳离子固化脂环族环氧低聚物/环氧树脂、有机-无机杂化聚氨酯丙烯酸酯低聚物/含磷丙烯酸酯体系。详细研究了阻燃涂层在紫外光辐照下的光固化动力学及固化膜的热性能、力学性能和阻燃机理;合成了半结晶超支化聚(酯-酰胺),探讨了其作为紫外光固化粉末涂层树脂的可能性。具体的研究内容如下:   合成了三(丙烯酰氧基乙氧基)苯基硅烷(TAEPS)和二(丙烯酰氧基乙氧基)甲基苯基硅烷(DAEMPS)树脂,采用FTIR、1HNMR、13C NMR和29Si NMR对其进行了分子结构表征,并与商品化环氧丙烯酸酯EB600混合,在光引发剂存在下,以紫外光辐照快速固化成膜。体系最大光聚合速率随着TAEPS或DAEMPS含量的增加而增大,固化膜中最终双键转化率变化趋势却相反,采用Photo-DSC测试可达80%以上;添加TAEPS和DAEMPS可有效提高材料的阻燃性能,其极限氧指数(LOI)值从EB600固化膜的21提高到30以上;TAEPS和DAEMPS固化膜在氮气中800℃时的成炭量分别是EB600固化膜的3倍和2倍;固化膜的Tg随着TAEPS含量的增加而增大,而对于DAEMPS却相反,前者由于交联密度的增加,而后者由于Si-O和Si-C柔性结构起主导作用;由于交联结构中柔性链的引入,固化膜的拉伸强度随着TAEPS或DAEMPS含量的增加而减小;而相反,含量为85%TAEPS或DAEMPS固化膜的断裂伸长率却是40%含量固化膜的1.3倍以上。   采用“醚交换-氧化法”合成了脂环族环氧树脂三(3,4-环氧基-环己基-1-甲氧基)苯基硅烷(TEMPS),利用FTIR、1H NMR、13C NMR和29Si NMR对其进行了分子结构表征,并将其与双酚A环氧树脂(EP828)以不同比例混合后进行阳离子光固化制备了一系列样品。DMTA结果表明,TEMPS和EP828具有良好的相容性,固化膜的Tg和Ts分别从纯EP828固化膜的138℃和93℃降到TEMPS含量为80%固化膜的122℃和79℃;固化膜的断裂伸长率随TEMPS含量的增加而提高,而拉伸强度变化趋势则相反;TEMPS的加入可有效提高材料的阻燃性能,其极限氧指数(LOI)值从EP828固化膜的22提高30以上;固化膜在空气中的最大降解速率对应的温度Tmax2随着TEMPS含量的增加而提高,空气中800℃时的成炭量从纯EP828固化膜0%提高到TEMPS含量为80%固化膜的14%;其阻燃过程为:固化膜燃烧受热时,低表面能的含硅物质由材料内部向表面迁移,并迅速聚集成炭,致密的含硅炭化层能阻碍热量和可燃气体的扩散,从而延缓燃烧和热释放速度,达到阻燃的目的。   合成了基于纳米多元醇的有机/无机杂化聚氨酯丙烯酸酯(SHUA),将SHUA与含磷丙烯酸酯(TAEP)以不同的比例混合,制备了一系列紫外光可固化有机/无机杂化阻燃树脂。体系的最大光聚合速率和最终双键转化率随SHUA含量增加而减小;SHUA与TAEP有很好的相容性,固化膜的弹性模量和Tg均随SHUA含量增加先增大后减小,当SHUA含量为10%时,Tg达到最大值(150℃);所有测试样品极限氧指数(LOI)值均在30以上,炭层的膨胀程度随SHUA含量增加呈先增大后减小趋势,当SHUA含量为20%时,膨胀程度最大;SHUA含量为40%固化膜在850℃时的成炭量是TAEP固化膜的6倍;固化膜的断裂伸长率随SHUA含量增加而提高,而拉伸强度则先增加后减小,当SHUA含量为5%时,体系获得最大拉伸强度(21.6 MPa)。   以丁二酸酐为AA单体,三羟甲基氨基甲烷为CB3单体,在无催化剂无溶剂条件下采用热缩聚法合成了超支化聚(酯-酰胺)(HP),采用1H NMR、GPC等对其分子结构进行了表征,并计算出其羟值为488mg KOH/g;将HP外围羟基进行烷基长链和丙烯酸酯改性后得到一系列半结晶超支化聚(酯-酰胺)(HP-LxDy)。HP处于无定形态,分子外围引入长链后,HP-LxDy具有内核无定形外围结晶的特殊结构,其Tg和Tm分别在40℃和120℃左右,满足低温光固化粉末涂层要求。HP-LxDy光聚合反应速率随光照时间迅速增加,最大光聚合速率随着树脂中双键含量的增加呈增大的趋势,最终双键转化率则呈减小的趋势。
其他文献
蚕丝蛋白(SF)是一种广泛来源于家蚕蚕丝当中的天然高分子蛋白质,由于其具有缓慢的生物降解性、良好的生物相容性以及低的免疫原性,使其在生物医用材料领域受到越来越多的关注。目前以蚕丝蛋白为基础的水凝胶作为生物医用材料已经被深入研究,但弱凝胶性能和低机械强度是阻碍其广泛适用性的主要限制因素。目前已有大量研究者对蚕丝蛋白凝胶化特性进行了深入的研究,包括物理方法如涡流、超声、震荡、通直流电源等方式来加速蚕丝
学位
本论文中,我们运用密度泛函理论(DFT)中的B3LYP和M06方法,对以下两个工作进行了详细的理论计算研究。我们研究的目的是提供合理的反应机理,解释实验现象和实验结果,揭示实验反应的本质,同时为以后相关的实验研究提供理论指导。具体的两个工作如下:(1)本文中我们用密度泛函理论对底物1A和1B在催化剂FeBr_3催化作用下发生骨架重排反应进行了理论研究。与一分子FeBr_3作催化剂相比较,我们发现两
有机锡化合物是一类广泛用作催化剂、聚氯乙烯热稳定剂、杀菌灭虫剂、防污涂料、木材防腐剂、抗癌试剂等方面的有机金属化合物,其结构及生物活性特别是抗癌活性的研究已成为目前有机金属化学领域的研究热点之一。有机硅烷偶联剂在医药和工业应用方面的研究一直都是化学研究领域的热点课题。本文通过取代水杨醛缩氨基酸及氨基硅烷席夫碱与有机锡化合物反应,制备了一系列氨基酸及氨基硅烷席夫碱有机锡化合物。利用元素分析、红外光谱
本论文中,我们运用密度泛函理论(DFT)中的M06和B3LYP方法,对如下两个工作进行了理论计算研究。我们研究的目的是提供合理的反应机理,解释实验现象和实验结果,同时为以后相关的实验研究提供理论指导。具体的两个工作如下:(1)我们借助密度泛函理论对金属Pd催化的芳基碘化物(R1)与不对称炔烃(R3)(Scheme 1,第三章)得到包含C(sp3)-I的产物(P3和P4)和含有一个三元碳环的产物(P
生物传感技术是现代分析科学与生物检测技术的基础,是分析化学的前沿领域,在生命科学、疾病诊断与治疗、食品安全等方面具有广阔的应用前景。生物传感技术可以代替传统分析手段中复杂费时的生物分析方法,具有选择性好、灵敏度高以及快速、原位、微型化、低成本等优点,为生命科学研究提供了有效的手段。随着社会的进步和科学技术的发展,生物传感方法和分析技术也面临着新的需求与挑战,检测对象的多样化、复杂化;高灵敏度、高选