强度介质界面不稳定性发展规律研究

来源 :中国工程物理研究院 | 被引量 : 1次 | 上传用户:forsanwang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
界面不稳定性是自然科学和工程技术领域的重要研究内容,是天体物理、地球物理、ICF等众多学科共同关心的问题之一。以往的研究大多是针对流体界面不稳定性发展规律的,随着工程问题的逐步明确,工程应用的界面不稳定性发展大多会涉及到强度介质界面,强度介质界面不稳定性发展越来越成为应用中的主要问题之一。因此,深入探讨强度介质在复杂持续加载以及强冲击作用下诱发的界面不稳定性问题,对于自然科学研究以及重大工程项目的顺利开展意义重大。本文首先针对界面不稳定性问题的研究需要,在弹塑性流体力学欧拉方法基础上进行了混合网格封闭性模型、爆轰、自适应网格加密等计算功能扩展,设计了根据流场情况确定合适计算区域的算法,能够有效提升计算效率。其次,利用定常及简单变加速度条件下界面不稳定性问题,对程序的计算结果进行了验证,计算结果与文献中的理论和计算结果符合。对定常加速度下金属界面不稳定性的计算,得到强度材料界面扰动不发展的稳定性条件,与不可压缩弹塑性介质的理论结果进行了对比分析。第三,以斜波加载条件下金属界面不稳定性问题为对象,构造了斜波加载条件缓慢加速金属飞片。通过改变扰动波长、振幅、飞片厚度、材料屈服强度等因素,研究了界面扰动增长规律。结果表明:大多数情况下气泡增长会达到稳定状态,而尖钉随着上述各因素的组合的变化,会出现脱离飞片主体或扰动增长达到稳定状态,展现出线性稳定状态、非线性稳定状态以及不稳定状态等;在稳定状态下,扰动尖钉增长的最大振幅kηmax sp与ρ|Vsp|2/Y近似满足线性关系,而气泡扰动增长的最大振幅kηmax sp与ρ|Vsp|2/Y近似满足对数关系;初步得到了在维持界面扰动稳定的条件下各个物理量之间满足的关系。第四,针对强冲击加载条件下金属界面不稳定性诱发的喷射问题,计算分析了真空以及充气环境对微射流飞行演化规律的影响。在真空条件下,表面缺陷随沟槽角度增加,射流速度基本上呈线性递减,V型缺陷和正弦缺陷的射流速度差别较小。充气环境下,微射流经历加速、减速、变形破碎、雾化等四个阶段。在变形破碎及雾化阶段,射流头部质量以射流颗粒的形式向尾部转移。在不同的充气压力下,各阶段的基本特征相似,随充气压力的升高,头部减速越快。在较高的充气压力下,会出现射流追赶并导致喷射物头部速度跳跃的现象。最后,在上述研究基础上,对柱形内爆加载条件下金属界面不稳定性的发展进行了数值模拟。计算结果表明:材料强度对界面不稳定性发展有不可忽略的抑制作用;材料屈服强度对较高模数不稳定性增长的抑制较强,而剪切模量对不稳定性发展的影响相对较弱;金属界面扰动增长存在最不稳定模数,随强度增加而减小,近似与屈服强度的对数呈线性关系;随着壳的厚度减小,扰动增长加快。
其他文献
聚变堆面向等离子体材料中滞留氚的测量是聚变研究领域的重要内容。准确评估面向等离子体材料中氚的含量和深度分布对聚变堆的燃料衡算和安全运行有着重要意义。钨是重要的候选面向等离子体材料之一,因其良好的物理性能和极低的燃料滞留量,很有可能作为未来聚变反应堆的面向等离子体材料使用。但目前针对钨材料中氚测量的实验较少,缺乏成熟、可靠的分析方法,尤其是针对聚变堆真实环境下钨中氚的测量技术研究。在真实聚变堆环境下
自从上个世纪80年代高次谐波在实验中首次被发现以来,高次谐波辐射的研究一直吸引着人们的关注。不过,早些年的研究主要集中在阈上高次谐波,近年来,由于可以得到优质的VUV(vacuum-ultraviolet)光源,人们逐渐开始关注阈下高次谐波的产生。通常来说半经典的三步模型给出了阈上谐波产生的物理图像,但是对于阈下谐波来说情况却复杂的多。不过,目前在实验和理论上面,越来越多的证据表明,与半经典模型相
微纳米加工技术作为一种可在微米、纳米尺度构建形貌和结构的技术,在工业生产和科学研究领域被广泛应用。传统的微纳米加工技术如电子束刻蚀、离子束刻蚀等,其高成本、高能耗等缺陷限制其在价格敏感用户中的使用。近年来发展起来的微球自组装技术以其可低成本、大面积制备微纳米结构而受到广泛的关注,成为传统微纳米加工技术的良好补充。而随着柔性器件在现实生活中的运用愈加广泛,在柔性基底表面低成本地构建出微纳米结构并以此
这篇论文第一部分我们主要讨论有界域的不可压的稳态带粘磁流体力学方程弱解的存在性。在边界由多个连通分支组成的有界域中,带粘不可压流体解的存在性一直是流体中最重要的问题,并且一直是公开的。通常情况下,对有界域中的流体而言,驱动机制一般有两种情形:一,部分边界的运动,例如两个旋转同心球中的流体;二,通过边界的可渗透部分,液体的流进流出,例如流体所在区域有有限个“源”。对于这一类问题,主要从两个方向尝试解
温稠密物质(Warm Dense Matter)是指状态介于冷凝聚态和经典理想等离子体之间的物质。它广泛地存在于宇宙天体中,也是含能材料爆轰过程、惯性约束核聚变和Z箍缩等动作过程中物质发展演化的重要阶段,其物理性质研究在这些相关领域研究中具有重要应用。温稠密物质是高能量密度物理学(High Energy Density Physics)的主要研究对象之一,其微观结构和动力学过程非常复杂,具有强非线
近年来,人工规范场中的冷原子的性质被广泛的研究。本论文先从人工规范场的起源(Berry相位)出发简要介绍拉曼机制实现人工规范场的原理。人工规范场的一个重要的应用是实现自旋轨道耦合。目前实验室里面能实现两种类型的自旋轨道耦合。一种是Rashba和Dressalhuass的等权叠加的自旋轨道耦合。它由I.B.Speilman在NIST的实验组第一次在87Rb原子中实现。另一种是Rashba的自旋轨道耦
金属铈是一种典型的非放射性f电子过渡金属,由于它具有独特的电子结构以及凝聚态相的多态性,一直是高压物理和强关联电子领域的热门研究对象。人们之所以特别关注金属铈的另一个重要原因是其相变与高压性质和重锕系元素有许多相似之处,而铈无毒无放射性,可以作为研究重锕系元素的理想模拟材料。金属铈的高压相结构、相变序列、相变机制、相图和相界位置等科学问题有待深入研究,超高压下的压缩性质的研究还鲜有涉足。现有静高压
本论文主要从理论上研究了半导体量子点和NV色心的相干光学性质的调控及应用,其中着重研究了利用暗态来实现原子核自旋的冷冻和极化。首先介绍了研究背景,基本概念以及应用前景。我们的工作主要包括两部分内容:用非线性量子光学效应来实现量子点和NV色心中原子核自旋的极化和涨落抑制;以及量子点在强场驱动下的非线性量子光学性质。量子信息和量子计算都需要维持电子的相干性,而与原子核自旋的超精细相互作用是引起电子退相
在Z-箍缩丝阵驱动的动态黑腔实验中,黑腔光谱诊断可以评估动态黑腔辐射功率,辐射产额以及辐射温度等重要参数。核物理与化学研究所提出建立一套多通道光谱诊断系统。黑腔辐射光谱区间为50 eV~1500eV的极紫外与软X射线能段,多层膜是工作在该能段的优异的光学色散元件。多通道光谱诊断系统一共挑选了十五个能点,需要有针对性地研制十五种多层膜。本文介绍了十五种多层膜的设计,制备与测试。并针对其中75 eV,
动载下金属样品的表面微喷和主体的熔化破碎(微层裂)问题与武器物理过程密切相关,其不但会改变金属飞层早期动力学响应行为,还对后期界面不稳定性和混合有重要影响,是各国公认的急需解决的关键问题之一,对其研究具有重要实际价值。从基础科学研究角度,该问题属于典型的冲击加卸载波与材料性能耦合的复杂动力学问题,涉及材料相变、熔化、断裂和缺陷影响等多个研究方向,属典型交叉前沿物理问题。不过,由于其形成机制极其复杂