广义Sobolev空间在最坏框架下的非线性逼近特征

来源 :西华大学 | 被引量 : 0次 | 上传用户:congrorm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究广义Sobolev空间Srp(T)在最坏框架下的非线性逼近特征,得到广义Sob-olev空间Srp(T)(1≤p≤∞)在Sq(T)-尺度下的非线性Alexandroffn-宽度αn(W,X),非线性manifold,n-宽度δn(W,X)和非线性,n-宽度βn(W,X)之间的关系及精确渐进阶估计,即   αn(BSrp(T),Sq(T))≈βn(BSp(T),Sq(T))≈δn(BSrp(T),Sq(T))≈n-r+1/q-1/p,1≤p,g≤∞其中,BSrp(T)是Srp(T)上的单位球。
其他文献
本文主要研究了两类三维双极流体动力半导体方程解的渐近行为.对于双极Euler-Poisson方程,首先将双极方程化成一个有阻尼的单极欧拉方程和一个单极欧拉泊松方程.通过傅里叶变
本文的主要内容是将Jackknife方法运用于位置参数模型的M-估计之中,并且首次在M-估计中提出了线性近似的Jackknife方法。文章首先介绍了Jackknife方法,M-估计的来龙去脉。而后
偏微分方程诞生于18世纪早期,那时人们普遍研究如何建立偏微分方程模型以及寻找一些特殊方程的显示解或特解.到了19世纪,偏微分方程的研究逐渐转化为研究其适定性,即研究解的存在
正交表是非常有用的.它不仅在统计学领域中是必不可少的,而且还被应用于计算机科学和密码学.正交频率方是正交拉丁方的推广,且和统计学,组合学和密码学都有联系。本文将首先给出
本文研究了如下四阶非线性偏差分方程   第一章论述了上面方程研究的重要性,在非线性项取特殊的线性函数时上面的方程可以包含文献[1-28]所研究的方程。   第二章约定了
金融风险管理中的模型建设具有重要意义,为了更好的管控风险,需要将经典模型不断的发展优化。本文的主要工作建立在经典风险模型的基础之上,考虑对带利率和扰动这两方面推广模型的研究。因为大偏差工具能够对极端索赔问题进行较好的量化,所以我们把工作的重心放在大偏差原理对风险过程的估计上。本文分为如下几个章节:第一章首先介绍了经典风险模型以及相关的重要结论,在经典模型中增加利率和随机扰动因素,得到本文所关注的常
近代物理学和应用数学的发展,要求分析和控制客观现象的数学能力向着富有全局性的高、精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科—
当今社会,随着经济的飞速发展,以及在经济自由化和全球化的大背景下,金融风险已经成为广大国内外学者和研究者们共同关注的对象。而风险度量则是风险管理中非常重要的组成部分,在