论文部分内容阅读
当长脉冲(亚皮秒、皮秒、纳秒甚至连续波)泵浦光纤反常色散区时,调制不稳定性会不断放大输入端低幅度噪声并导致随后通过高阶孤子衰变产生的基阶孤子振幅以及脉宽出现较大波动。这些具有不同能级以及脉冲宽度的基阶孤子在群速度方面的差异性将导致孤子间发生碰撞。孤子碰撞将导致具有较低峰值功率的基阶孤子将部分能量转移给具有较高峰值功率的基阶孤子从而使其形成光流氓波(RW)。光RW是一种具有超高强度极大红移并产生在超连续谱(SC)长波长处的低概率事件,它的产生使得SC光谱的相干性、稳定性以及平坦性严重退化。因此如何有效调控光RW的产生以提高输出SC光源的性能逐渐成为非线性光学领域一个重要的研究热点。具有灵活可调的色散以及非线性特性的光子晶体光纤(PCF)为研究光RW可控产生提供了良好的传输平台。基于对光RW产生的有效调控,人们可以根据对SC光源的需求来确定产生亦或抑制光RW;另外也可以利用光RW具有超高强度极大红移的特性实现SC的可选择激发,即在特定长波长处甚至中红外波段处产生高强度频谱成分,从而为全光纤型可调谐的中红外SC光源高效激发提供可选择方案。本文数值模拟研究了经过具有合适调制深度以及调制频率的种子光调制后的泵浦光入射光纤反常色散区导致光RW可控产生物理机制,取得的主要研究成果如下:
1.根据量子理论,推导了当需要考虑噪声影响时,泵浦长脉冲产生光RW所遵循的包含自发拉曼散射噪声的非线性薛定谔方程。同时,简要介绍了分步傅里叶算法以及对SC光源进行时频分析所采用的基于短时傅里叶变换算法的相关技术。详细阐述了光纤中SC产生过程中孤子之间、孤子与色散波之间、以及光RW与色散波之间主要的相互作用过程。
2.研究了经过具有不同调制频率以及不同调制深度的种子光调制后的亚皮秒量级光脉冲泵浦硅PCF的反常色散区时光RW以及SC的产生。对比于噪声诱导的调制不稳定性,具有最佳调制频率的种子光诱导的调制不稳定性有助于显著提高SC产生过程中光RW出现的统计学概率,并促使光RW具有相对稳定的强度、相对集中的时延以及能够红移至更长波长处。另外,当种子光具有更合适的调制深度时,输出光RW可以获得更高强度并能够产生于光纤较短传输距离处。这些研究结果表明了对比噪声诱导的调制不稳定效应,具有合适的调制频率以及调制深度的种子光诱导的调制不稳定效应能够通过抑制噪声影响促使光RW相对可控地产生在SC光源的长波长处,从而为实现可调谐的长波长光谱成分的产生以及中红外SC的选择性激发提供了新的思路。
3.研究了如何利用级联PCF通过治理光RW解决输出SC能量分布不均匀并最终扩展输出SC的频谱带宽以及提高输出SC的光谱平坦性。其中,级联光纤由两级组成:第一级为单零色散点PCF,第二级为双零色散点PCF。在第一级PCF中,通过选择具有最佳调制频率的种子光调制亚皮秒量级光脉冲以抑制噪声影响,从而相对可控地产生具有较大红移的高强度光RW。在第二级PCF中,通过调整该PCF的第二个零色散波长的位置来将在第一级PCF中产生的光RW转化为不同波的形式。当第二级PCF的第二个零色散波长位于较短波长处时,在第一级PCF产生的光RW将直接进入第二级PCF的正常色散区,从而将光RW直接转化为色散波的形式,进而提高输出SC的光谱平坦性;当第二级PCF的第二个零色散波长增长到一定波长范围时,在第一级PCF中产生的光RW将进入第二级PCF的反常色散区,并在拉曼效应作用下不断红移。当光RW到达第二个零色散波长附近时将在拉曼效应和光谱反冲效应的共同作用下停止红移并在满足相位匹配的条件下通过互相位调制作用在PCF的正常色散区辐射出红移色散波,从而扩展输出SC的频谱带宽。
4.研究了如何通过有效调控具有超高强度极大红移的光RW产生来增强中红外波段功率谱强度以及将中红外SC进一步向长波长处扩展。由于利用软玻璃材料制备的PCF可以促使SC光谱范围逐渐地从可见光波段向紫外和中红外波段扩展,数值研究了经过种子光调制的亚皮秒量级光脉冲泵浦由硫化物As2Se3制成的PCF的反常色散区时光RW以及中红外SC的产生过程。在考虑随机噪声的影响下进行多次数值仿真,其研究结果表明了提供一个具有最佳调制频率的种子光可以促使光RW相对可控地产生从而提高中红外SC光谱的稳定性。对比于噪声诱导的调制不稳定性,具有最佳调制频率的种子光诱导的调制不稳定性可以促使光RW具有较高的强度以及较大的红移,从而提高中红外SC长波长频谱成分的信噪比以及扩展中红外SC的长波长波段。另外,通过提高泵浦光功率可以进一步促进光RW红移以及扩展中红外SC的频谱宽度。
1.根据量子理论,推导了当需要考虑噪声影响时,泵浦长脉冲产生光RW所遵循的包含自发拉曼散射噪声的非线性薛定谔方程。同时,简要介绍了分步傅里叶算法以及对SC光源进行时频分析所采用的基于短时傅里叶变换算法的相关技术。详细阐述了光纤中SC产生过程中孤子之间、孤子与色散波之间、以及光RW与色散波之间主要的相互作用过程。
2.研究了经过具有不同调制频率以及不同调制深度的种子光调制后的亚皮秒量级光脉冲泵浦硅PCF的反常色散区时光RW以及SC的产生。对比于噪声诱导的调制不稳定性,具有最佳调制频率的种子光诱导的调制不稳定性有助于显著提高SC产生过程中光RW出现的统计学概率,并促使光RW具有相对稳定的强度、相对集中的时延以及能够红移至更长波长处。另外,当种子光具有更合适的调制深度时,输出光RW可以获得更高强度并能够产生于光纤较短传输距离处。这些研究结果表明了对比噪声诱导的调制不稳定效应,具有合适的调制频率以及调制深度的种子光诱导的调制不稳定效应能够通过抑制噪声影响促使光RW相对可控地产生在SC光源的长波长处,从而为实现可调谐的长波长光谱成分的产生以及中红外SC的选择性激发提供了新的思路。
3.研究了如何利用级联PCF通过治理光RW解决输出SC能量分布不均匀并最终扩展输出SC的频谱带宽以及提高输出SC的光谱平坦性。其中,级联光纤由两级组成:第一级为单零色散点PCF,第二级为双零色散点PCF。在第一级PCF中,通过选择具有最佳调制频率的种子光调制亚皮秒量级光脉冲以抑制噪声影响,从而相对可控地产生具有较大红移的高强度光RW。在第二级PCF中,通过调整该PCF的第二个零色散波长的位置来将在第一级PCF中产生的光RW转化为不同波的形式。当第二级PCF的第二个零色散波长位于较短波长处时,在第一级PCF产生的光RW将直接进入第二级PCF的正常色散区,从而将光RW直接转化为色散波的形式,进而提高输出SC的光谱平坦性;当第二级PCF的第二个零色散波长增长到一定波长范围时,在第一级PCF中产生的光RW将进入第二级PCF的反常色散区,并在拉曼效应作用下不断红移。当光RW到达第二个零色散波长附近时将在拉曼效应和光谱反冲效应的共同作用下停止红移并在满足相位匹配的条件下通过互相位调制作用在PCF的正常色散区辐射出红移色散波,从而扩展输出SC的频谱带宽。
4.研究了如何通过有效调控具有超高强度极大红移的光RW产生来增强中红外波段功率谱强度以及将中红外SC进一步向长波长处扩展。由于利用软玻璃材料制备的PCF可以促使SC光谱范围逐渐地从可见光波段向紫外和中红外波段扩展,数值研究了经过种子光调制的亚皮秒量级光脉冲泵浦由硫化物As2Se3制成的PCF的反常色散区时光RW以及中红外SC的产生过程。在考虑随机噪声的影响下进行多次数值仿真,其研究结果表明了提供一个具有最佳调制频率的种子光可以促使光RW相对可控地产生从而提高中红外SC光谱的稳定性。对比于噪声诱导的调制不稳定性,具有最佳调制频率的种子光诱导的调制不稳定性可以促使光RW具有较高的强度以及较大的红移,从而提高中红外SC长波长频谱成分的信噪比以及扩展中红外SC的长波长波段。另外,通过提高泵浦光功率可以进一步促进光RW红移以及扩展中红外SC的频谱宽度。