论文部分内容阅读
紫外探测器在国防,航天等领域都有着重要的应用,ZnO因其直接间隙禁带宽度大,本征响应波段位于紫外区,且激子束缚能高,成本较低,为制备紫外探测器的优秀半导体材料。因ZnO为本征n型半导体材料,其同质p型半导体难以实现,无法实现高质量的同质p-n结,探测器的性能较差,响应度较低,本文中利用ALD的方法制备高性能的ZnO薄膜,并用Ag纳米结构的表面等离子激元效应来对传统的光导体结构ZnO紫外探测器进行增强。通过ALD方法制备高性能的ZnO薄膜,并在此基础上制备Ag纳米线/ZnO层结构,研究ZnO在Ag纳米线上的结合形貌,并研究Ag纳米线/ZnO层结构热处理前后变化,并制备Ag纳米线/ZnO薄膜探测器,并研究其光电性能。用ALD沉积制备ZnO薄膜,制备有光学优势的非极性结构的ZnO薄膜,ALD沉积的每循环沉积厚度为0.194nm/cycle,随着ALD沉积的进行,优势晶面逐渐变为(100)晶面。通过热处理的方式ZnO薄膜的氧空位和内部缺陷的得到改善。制备ZnO薄膜紫外探测器,当ZnO薄膜沉积厚度为300个沉积循环时及约58nm时,该ZnO薄膜紫外探测器有着最优异的光电性能,响应度(5V,365nm)为13.3A/W,光探测值为9.6×109Jones,光暗电流比为47。当工作电压为5V,对响应光为365nm,有最大的光响应度为15.7A/W,紫外可见抑制比为189倍,响应速度较慢,其响应时间大于400s,有驰豫现象。制备Ag纳米线/ZnO增强型紫外探测器,Ag纳米线/ZnO层热处理温度为600℃的探测器综合性能最好,光响应度(5V,365nm)能达到120.4A/W,光暗电流比能达到6686,光探测值为3.4×1011Jones。随着热处理温度的上升,探测器的响应速度加快。当工作电压为5V,响应光为350nm时,有最大的光响应度为131A/W。紫外/可见抑制比可达1824倍,有很优异的紫外探测性能。当ZnO薄膜沉积厚度为400个沉积循环时及约72nm时,该ZnO薄膜紫外探测器有着最优异的光电性能,响应度(5V,365nm)为365A/W。对比了ZnO薄膜探测器与增强型ZnO薄膜探测器光电性能与其最优响应波长,发现增强型ZnO薄膜探测器光响应值提高了100倍左右。对紫外区域的最强响应波段则发生了蓝移,紫外可见抑制比和光响应速率也有了极大的提高。说明了纳米Ag结构的表面等离子激元效应确实有效增强了ZnO薄膜探测器的光电性能。